Coordination of cell proliferation and cell death is essential to attain proper organ size during development and for maintaining tissue homeostasis throughout postnatal life. In Drosophila, these two processes are orchestrated by the Hippo kinase cascade, a growth-suppressive pathway that ultimately antagonizes the transcriptional coactivator Yorkie (Yki). Here we demonstrate that a single phosphorylation site in Yki mediates the growth-suppressive output of the Hippo pathway. Hippo-mediated phosphorylation inactivates Yki by excluding it from the nucleus, whereas loss of Hippo signaling leads to nuclear accumulation and therefore increased Yki activity. We further delineate a mammalian Hippo signaling pathway that culminates in the phosphorylation of YAP, the mammalian homolog of Yki. Using a conditional YAP transgenic mouse model, we demonstrate that the mammalian Hippo pathway is a potent regulator of organ size, and that its dysregulation leads to tumorigenesis. These results uncover a universal size-control mechanism in metazoan.
First discovered in Drosophila, the Hippo signaling pathway is a conserved regulator of organ size. Central to this pathway is a kinase cascade leading from the tumor suppressor Hippo (Mst1 and Mst2 in mammals) to the oncoprotein Yki (YAP and TAZ in mammals), a transcriptional coactivator of target genes involved in cell proliferation and survival. Here, I review recent progress in elucidating the molecular mechanism and physiological function of Hippo signaling in Drosophila and mammals. These studies suggest that the core Hippo kinase cascade integrates multiple upstream inputs, enabling dynamic regulation of tissue homeostasis in animal development and physiology.
Coordination between cell proliferation and cell death is essential to maintain homeostasis in multicellular organisms. In Drosophila, these two processes are regulated by a pathway involving the Ste20-like kinase Hippo (Hpo) and the NDR family kinase Warts (Wts; also called Lats). Hpo phosphorylates and activates Wts, which in turn, through unknown mechanisms, negatively regulates the transcription of cell-cycle and cell-death regulators such as cycE and diap1. Here we identify Yorkie (Yki), the Drosophila ortholog of the mammalian transcriptional coactivator yes-associated protein (YAP), as a missing link between Wts and transcriptional regulation. Yki is required for normal tissue growth and diap1 transcription and is phosphorylated and inactivated by Wts. Overexpression of yki phenocopies loss-of-function mutations of hpo or wts, including elevated transcription of cycE and diap1, increased proliferation, defective apoptosis, and tissue overgrowth. Thus, Yki is a critical target of the Wts/Lats protein kinase and a potential oncogene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.