Proper satellite-based crop monitoring applications at the farm-level often require near-daily imagery at medium to high spatial resolution. The combination of data from different ongoing satellite missions Sentinel 2 (ESA) and Landsat 7/8 (NASA) provides this unprecedented opportunity at a global scale; however, this is rarely implemented because these procedures are data demanding and computationally intensive. This study developed a robust stream processing for the harmonization of Landsat 7, Landsat 8 and Sentinel 2 in the Google Earth Engine cloud platform, connecting the benefit of coherent data structure, built-in functions and computational power in the Google Cloud. The harmonized surface reflectance images were generated for two agricultural schemes in Bekaa (Lebanon) and Ninh Thuan (Vietnam) during 2018–2019. We evaluated the performance of several pre-processing steps needed for the harmonization including the image co-registration, Bidirectional Reflectance Distribution Functions correction, topographic correction, and band adjustment. We found that the misregistration between Landsat 8 and Sentinel 2 images varied from 10 m in Ninh Thuan (Vietnam) to 32 m in Bekaa (Lebanon), and posed a great impact on the quality of the final harmonized data set if not treated. Analysis of a pair of overlapped L8-S2 images over the Bekaa region showed that, after the harmonization, all band-to-band spatial correlations were greatly improved. Finally, we demonstrated an application of the dense harmonized data set for crop mapping and monitoring. An harmonic (Fourier) analysis was applied to fit the detected unimodal, bimodal and trimodal shapes in the temporal NDVI patterns during one crop year in Ninh Thuan province. The derived phase and amplitude values of the crop cycles were combined with max-NDVI as an R-G-B false composite image. The final image was able to highlight croplands in bright colors (high phase and amplitude), while the non-crop areas were shown with grey/dark (low phase and amplitude). The harmonized data sets (with 30 m spatial resolution) along with the Google Earth Engine scripts used are provided for public use.
The Red River Delta is one of two biggest deltas in Vietnam. People living in the delta depend entirely on groundwater for their domestic water. However, the aquifer system in the whole Red River Delta remains poorly understood due to the lack of available data. Recently, we were nominated to construct a hydrogeological database. Using these valuable data contained in this database, this paper comprehensively analyzed the best number of 778 boreholes including well logs and their hydrogeological parameters obtained from pumping tests for the first time in order to identify the entire aquifer system and characterize hydrogeological conditions in the whole delta for potential groundwater resources. Great efforts have been made to establish and analyze hydrogeological maps, cross sections, and contour maps of main aquifers' thickness and transmissivity. As for the results, we found that groundwater mainly exists in Quaternary unconsolidated sediments as porous water forming the topmost Holocene unconfined aquifer (HUA) and the shallow Pleistocene confined aquifer (PCA) sandwiching the Holocene-Pleistocene aquitard (HPA), while cleft and karst water exist in consolidated Neogene formations and Mesozoic rocks constituting the Neogene water bearing layer (NWL) and Mesozoic fractured zones (MFZ), respectively. PCA is almost entirely distributed over the delta. It serves as the highest groundwater potential and the most important aquifer for water supply. HUA is also widely distributed about 88% over the delta and has a high groundwater potential. NWL and MFZ, placed below PCA but exposed on the surface outside the delta, are minor sources for local domestic water supply only. These findings are indispensable for further groundwater analyses needed to ensure the sustainable groundwater development for the high-security water requirements in the delta, but have never been completed sufficiently before due to the unavailability of large-scale basic data sets.
Characterization of droughts using satellite-based data and indices in a steep, highly dynamic tropical catchment, like Vu Gia Thu Bon, which is the most important basin in central Vietnam, has remained a challenge for many years. This study examined the six widely used vegetation indices (VIs) to effectively monitor droughts that are based on their sensitivity with precipitation, soil moisture, and their linkage with the impacts on agricultural crop production and forest fires. Six VIs representing the four main groups, including greenness-based VIs (Vegetation Condition Index), water-based VIs (Normalized Difference Water Index, Land Surface Water Index), temperature-based VIs (Temperature Condition Index), and combined VIs (Vegetation Health Index, Normalized Difference Drought Index) were tested using MODIS data from January 2001 to December 2016 with the support of cloud-based Google Earth Engine computational platform. Results showed that droughts happened almost every year, but with different intensity. Vegetation stress was found to be mainly attributed to precipitation in the rice paddy fields and to temperature in the forest areas. Findings revealed that combined vegetation indices were more sensitive drought indicators in the basin, whereas their performance was different by vegetation type. In the rice paddy fields, NDDI was more sensitive to precipitation than other indices; it better captured droughts and their impacts on crop yield. In the forest areas, VHI was more sensitive to temperature, and thus had better performance than other VIs. Accordingly, NDDI and VHI were recommended for monitoring droughts in the agricultural and forest lands, respectively. The findings from this study are crucial to map drought risks and prepare an effective mitigation plan for the basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.