The aim of research is to simulate the zones of solar radiation on the curved surfaces of the shells of high-rise buildings for the effective use of renewable solar energy. An urgent task is the development of tools that can substantiate the decision-making by designers about the location of solar thermal devices in the energy-efficient design of curvilinear high-rise buildings. The main attention is paid to high-rise buildings, is actively growing in modern megalopolises and requires a significant energy resource. To optimize the integration of solar thermal devices in high-rise buildings, it is important to take into account a set of design parameters, including parameters of surface shape and location in space. A feature of curved surfaces, considered in the study, is their aerodynamic properties, which provide them with the advantage of choosing among modern high-rise buildings. At the same time, the complexity of setting the parameters of a curved surface to determine the zones of solar radiation for the effective use of regenerative solar energy lies in providing reliable and convenient tools for optimizing decision-making. The study proposes an application of the method based on a discrete geometric model of solar radiation input on the surface of the shells of high-rise buildings, described by compartments of curved geometric surfaces. As a result of modeling, let’s obtain a family of lines of the same level of solar radiation on a certain curved surface for the given parameters of time and geographic location. As an example of simulation modeling, the performed calculations of the instantaneous model of the distribution of solar radiation on the compartments of the curved surfaces of an ellipsoid of revolution, hemisphere, hyperbolic paraboloid. On the basis of the proposed model for the distribution of solar radiation over curvilinear surfaces of buildings, the influence of factors arising in the design process is investigated: changes in the geometric parameters of the surface shape, orientation to the cardinal points, the formation of zones of its own shadow on surfaces. Calculations were performed and instantaneous solar radiation zones were constructed on the surfaces of a hemisphere, a hyperbolic paraboloid with various geometric parameters, taking into account different orientations relative to the cardinal points, and determining the zones of its own shadow. At this stage of the study, the result is an algorithm for constructing zones of different levels of solar radiation on curved surfaces of high-rise buildings. The advantage of the algorithm is the ability to analyze the results of changes in the design parameters of the surface of a high-rise building when placing solar systems on them. The proposed approach will provide a basis for automating the modeling process, will help expand the scope of solar systems in high-rise construction and increase the efficiency of their work
9XC steel is a steel alloy of the commonly used tool to make a variety of products. When manufacturing such products, surface grinding method is commonly used as the final machining method for critical surfaces. Therefore, it is very necessary to research for improving surface quality and machining productivity when grinding this steel. In this study, Multi-Criteria Decision-Making (MCDM) is presented when surface grinding 9XC steel with a segmented grinding wheel. Taguchi method has been chosen to design the experimental matrix. MCDM has been performed using Proximity Indexed Value (PIV). This study has determined the value of workpiece velocity, feed rate and depth of cut to simultaneously ensure the minimum surface roughness and the maximum Material Removal Rate (MRR). The effect of cutting parameters on surface roughness has been also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.