The electronic absorption and emission spectra of free UO2F2 and its water solvated complexes below 32,000 cm(-1) are investigated at the levels of ab initio CASPT2 and CCSD(T) with inclusion of scalar relativistic and spin-orbit coupling effects. The influence of the water coordination on the electronic spectra of UO2F2 is explored by investigating the excited states of solvated complexes (H2O)nUO2F2 (n = 1-3). In these uranyl complexes, water coordination is found to have appreciable influence on the (3)Δ (Ω = 1g) character of the luminescent state and on the electronic spectral shape. The simulated luminescence spectral curves based on the calculated spectral parameters of (H2O)nUO2F2 from CCSD(T) approach agree well with experimental spectra in aqueous solution at both near-liquid-helium temperature and room temperature. The possible luminescence spectra of free UO2F2 in gas phase are predicted on the basis of CASPT2 and CCSD(T) results, respectively, by considering three symmetric vibration modes. The effect of competition between spin-orbit coupling and ligand field repulsion on the luminescent state properties is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.