This study presents an innovative, low-cost, mass-manufacturable ion implantation technique for converting thin film normally on AlGaN/GaN devices into normally off ones. Through TCAD (Technology Computer-Aided Design) simulations, we converted a calibrated normally on transistor into a normally off AlGaN/GaN transistor grown on a silicon <111> substrate using a nitrogen ion implantation energy of 300 keV, which shifted the bandgap from below to above the Fermi level. In addition, the threshold voltage (Vth) was adjusted by altering the nitrogen ion implantation dose. The normally off AlGaN/GaN device exhibited a breakdown voltage of 127.4 V at room temperature because of impact ionization, which showed a positive temperature coefficient of 3 × 10−3 K−1. In this study, the normally off AlGaN/GaN device exhibited an average drain current gain of 45.3%, which was confirmed through an analysis of transfer characteristics by changing the gate-to-source ramping. Accordingly, the proposed technique enabled the successful simulation of a 100-µm-wide device that can generate a saturation drain current of 1.4 A/mm at a gate-to-source voltage of 4 V, with a mobility of 1487 cm2V−1s−1. The advantages of the proposed technique are summarized herein in terms of processing and performance.
In this study, the breakdown behavior of a calibrated depletion mode AlGaN/GaN transistor with a nitrogen-implanted gate region was simulated and analyzed using Sentaurus TCAD simulation, with particular emphasis on the metal contact design rule for a GaN-based high-electron-mobility transistor (HEMT) device with a variety of 2DEG concentrations grown on a silicon substrate. The breakdown behaviors for different source/drain contact schemes were investigated using Sentaurus simulation. The metal contact positions within the source and drain exhibited different piezoelectric effects and induced additional polarization charges for the 2DEG (two-dimensional electron gas). Due to the variation of source/drain contact schemes, electron density has changed the way to increase the electric field distribution, which in turn increased the breakdown voltage. The electric field distribution and 2DEG profiles were simulated to demonstrate that the piezoelectric effects at different metal contact positions considerably influence the breakdown voltage at different distances between drain metal contacts. When the contact position was far away from the AlGaN/GaN, the breakdown voltage of the nitrogen-implanted gated device decreased by 41% because of the relatively low electron density and weak induced piezoelectric effect. This reduction is significant for a 20 μm source-drain length. The minimum critical field used for the breakdown simulation was 4 MV/cm. The simulated AlGaN/GaN device exhibits different breakdown behaviors at different metal contact positions in the drain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.