BACKGROUND: Cases of adolescents and young adults developing myocarditis after vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–targeted mRNA vaccines have been reported globally, but the underlying immunoprofiles of these individuals have not been described in detail. METHODS: From January 2021 through February 2022, we prospectively collected blood from 16 patients who were hospitalized at Massachusetts General for Children or Boston Children’s Hospital for myocarditis, presenting with chest pain with elevated cardiac troponin T after SARS-CoV-2 vaccination. We performed extensive antibody profiling, including tests for SARS-CoV-2–specific humoral responses and assessment for autoantibodies or antibodies against the human-relevant virome, SARS-CoV-2–specific T-cell analysis, and cytokine and SARS-CoV-2 antigen profiling. Results were compared with those from 45 healthy, asymptomatic, age-matched vaccinated control subjects. RESULTS: Extensive antibody profiling and T-cell responses in the individuals who developed postvaccine myocarditis were essentially indistinguishable from those of vaccinated control subjects, despite a modest increase in cytokine production. A notable finding was that markedly elevated levels of full-length spike protein (33.9±22.4 pg/mL), unbound by antibodies, were detected in the plasma of individuals with postvaccine myocarditis, whereas no free spike was detected in asymptomatic vaccinated control subjects (unpaired t test; P <0.0001). CONCLUSIONS: Immunoprofiling of vaccinated adolescents and young adults revealed that the mRNA vaccine–induced immune responses did not differ between individuals who developed myocarditis and individuals who did not. However, free spike antigen was detected in the blood of adolescents and young adults who developed post-mRNA vaccine myocarditis, advancing insight into its potential underlying cause.
Gastric cancer remains fifth most common cancer often diagnosed at an advanced stage and is the second leading cause of cancer-related death worldwide. Long non-coding RNAs (lncRNAs) involved in various cellular pathways are essential for tumor occurrence and progression and they have high potential to promote or suppress the expression of many genes. In this study, we profiled 19 selected cancer-associated lncRNAs in thirty gastric adenocarcinomas and matching normal tissues by qRT-PCR. Our results showed that most of the lncRNAs were significantly upregulated (12/19). Further, we performed bioinformatic screening of miRNAs that share common miRNA response elements (MREs) with lncRNAs and their downstream mRNA targets. The prediction identified three microRNAs (miR-21, miR-145 and miR-148a) and five gastric cancer-specific target genes (EGFR, KLF4, DNMT1 and AGO4) which also showed strong correlation with lncRNAs in regression analysis. Finally, we constructed an integrated lncRNA-miRNA-mRNA interaction network of the candidate genes to understand the post-transcriptional gene regulation. The ceRNA network analysis revealed that the differentially regulated miR-21 and miR-148a were playing as central candidates coordinating sponging activity of the lncRNAs analyzed (H19, TUG1 and MALAT1) in this study and the overexpression of H19 and miR-21 could be a signature event of gastric tumorigenesis that could serve as prognostic indicators and therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.