Fun in the sun! A strategy has been devised for functionalizing and solubilizing boron dipyrromethene (Bodipy) dyes at the central boron atom and changing the color by increasing delocalization on the central core. This approach leads to the formation of stable B-C[triple bond]C and pyrrole--C=C linkages suitable for use in TiO(2)-sensitized devices (see figure).
Alternating multilayer films composed of titania nanosheets and Zn porphyrins were prepared by use of a previously reported Langmuir-Blodgett film-transfer method in order to fabricate photoelectrochemical devices. Closely packed titania nanosheet monolayers on indium tin oxide (ITO), mica, and quartz surfaces strongly adsorbed cationic [5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrinatozinc]4+ (ZnTMPyP4+) by electrostatic interactions. The alternating deposition process afforded nanometer-scale multilayer films with the following structure: solid surface/(titania nanosheet/ZnTMPyP4+)n (n is the number of layers). The multilayer films were characterized by various physical measurements, including AFM, XRD, and UV-visible spectra. The visible-light irradiation of this multilayer film on an ITO electrode in the presence of triethanolamine as an electron donor yielded an anodic photocurrent. The action spectrum was consistent with the absorption spectrum of ZnTMPyP4+, which indicates that the photoexcitation of ZnTMPyP4+ is responsible for the photocurrent generation. However, the photocurrent density decreased with an increasing number of layers, which indicates that the harvesting of photoexcited electrons vertically through the titania nanosheets in the ITO/(titania nanosheet/ZnTMPyP4+)n structure was not efficient. To overcome this problem, the use of a lateral interlayer connection to all of the titania nanosheets with Ag paste was examined. As a result, a dramatic improvement in the photocurrent density was obtained. Thus, for efficient photocurrent generation with the titania nanosheet-ZnTMPyP4+ composite material, the lateral connection to all of the titania nanosheet layers is effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.