P-glycoprotein (P-gp) has a major role to play in drug pharmacokinetics and pharmacodynamics, since it effluxes many cytotoxic hydrophobic anticancer drugs from gastrointestinal tract, brain, liver and kidney. Piperine is known to enhance the bioavailability of curcumin, as a substrate of P-gp by at least 2000%. Besides these at least 50 other substrates and inhibitors of P-gp have been reported so far. All P-gp inhibitors have diverse structures. Although little is known about binding of some flavonoids and steroids at the NBD (nucleotide binding domain) of P-gp in the vicinity of ATP binding site inhibiting its hydrolysis, a valid explanation of how P-gp accommodates such a diverse set of inhibitors is still awaited. In the present study, piperine up to 100 μM has not shown observable cytotoxic effect on MDCK cell line, and it has been shown to accumulate rhodamine by fluorescence microscopy and fluorescent activated cell sorter in MDCK cells. Computational simulation for piperine and some first and second generation P-gp inhibitors has shown that these dock at the NBD site of P-gp. A comparative simulation study has been carried out regarding their docking and binding energies. Binding conformation of P-gp co-crystallized complexes with ADP, AMP-PNP (Adenylyl-imidodiphosphate), and ATP were compared with piperine. The receptor based E-pharmacophore of docked piperine has been simulated to find common features amongst P-gp inhibitors. Finally it has been concluded that piperine could be utilized as base molecule for design and development of safe non-toxic inhibitor of P-gp in order to enhance the bioavailability of most of its substrates.
A comparative study of binding interaction between Safranin O (SO) and Neutral Red (NR) with lysozyme (Lyz) has been reported using several spectroscopic methods along with computational approaches. Steady-state fluorescence measurements revealed static quenching as the major quenching mechanism in Lyz-SO and Lyz-NR interaction, which is further supported by time-resolved fluorescence and UV-vis measurements. Additionally, binding and thermodynamic parameters of these interactions are calculated from temperature dependent fluorescence data. Moreover, conformational changes of protein upon binding with SO and NR are provided by synchronous and circular dichroism (CD) measurements. Molecular docking study provided the exact binding location of SO and NR in lysozyme. Along with this study, molecular dynamics simulation is carried out to measure the stability of Lyz, Lyz-SO, and Lyz-NR complex. The present study revealed the strong binding affinity of dyes with lysozyme, and this study would be helpful toward medical and environmental science.
The Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase (pfSAHH) enzyme has been considered as a potential chemotherapeutic target against malaria due to the amino acid differences found on binding sites of pfSAHH related to human SAHH. It has been reported that noraristeromycin and some curcumin derivatives have potential binding with the largest cavity of pfSAHH, which is also related to the binding with Nicotinamide-Adenine-Dinucleotide (NAD) and Adenosine (ADN). Our present work focuses on docking and ADMET studies to select potential inhibitors of pfSAHH. The binding of the selected inhibitor of the PfSAHH active site was analyzed using Molegro Virtual Docker. In this study, curcumin and its derivatives have been found to have higher binding affinity with pfSAHH than noraristeromycin. Seven amino acid residues Leu53, His54, Thr56, Lys230, Gly397, His398 and Phe407 of pfSAHH involved in binding with curcumin, are the same as those for noraristeromycin, which reveals that curcumin and noraristeromycin bind in the same region of pfSAHH. Curcumin has shown a strong interaction with hydrophobic amino acid residues of pfSAHH. Molecular Docking and ADMET predictions suggest that curcumin can be a potent inhibitor of pfSAHH with ability to modulate the target in comparatively smaller dose. Therefore, curcumin is likely to become a good lead molecule for the development of effective drug against malaria.
A multiplex PCR assay has been developed for detection of Anopheles fluviatilis cryptic species, their human host preference, and Plasmodium falciparum presence in the mosquito. PCR conditions were optimized using primer sets specific for A. fluviatilis cryptic species, Homo sapiens, and P. falciparum and evaluated with field-collected mosquitoes. A unique mosquito processing method was used for screening P. falciparum carrying capacity and human host preference of A. fluviatilis mosquitoes in first-round multiplex PCR. The vectorial status of the mosquito for P. falciparum parasite was confirmed in second-round PCR. Of the 121 collected mosquitoes, 92 were of S type, 26 of T type, and 3 were of other types. Human host preference was dominant in S type, of which 4% were P. falciparum sporozoite positive. This assay and processing method can also be used to evaluate vector competence of other anophelines.
During the last twenty years, organic fluorination chemistry established itself as an important tool to get a biologically active compound. This belief can be supported by the fact that every year, we are getting fluorinated drugs in the market in extremely significant numbers. Last year, also ten fluorinated drugs have been approved by FDA and during the COVID-19 pandemic, fluorinated drugs played a very crucial role to control the disease and saved many lives. In this review, we surveyed all ten fluorinated drugs approved by FDA in 2021 and all fluorinated drugs which were directly-indirectly used during the COVID-19 period, and emphasis has been given particularly to their synthesis, medicinal chemistry, and development process. Out of ten approved drugs, one drug pylarify, a radioactive diagnostic agent for cancer was approved for use in positron emission tomography imaging. Also, very briefly outlined the significance of fluorinated drugs through their physical, and chemical properties and their effect on drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.