Variance in early physiologic data can impact patient outcomes and may serve as targets for early goal-directed therapy. Electronically retrievable features such as ICP, glucose levels, and electroencephalography patterns should be considered in disease severity and risk stratification scores.
ObjectiveTo characterize the amount of EEG suppression achieved in refractory status epilepticus (RSE) patients treated with pharmacologically-induced coma (PIC).MethodsWe analyzed EEG recordings from 35 RSE patients between 21–84 years-old who received PIC that target burst suppression and quantified the amount of EEG suppression using the burst suppression probability (BSP). Then we measured the variability of BSPs with respect to a reference level of BSP 0.8 ± 0.15. Finally, we also measured the variability of BSPs with respect to the amount of intravenous anesthetic drugs (IVADs) received by the patients.ResultsPatients remained in the reference BSP range for only 8% (median, interquartile range IQR [0, 29] %) of the total time under treatment. The median time with BSP below the reference range was 84% (IQR [37, 100] %). BSPs in some patients drifted significantly over time despite constant infusion rates of IVADs. Similar weight-normalized infusion rates of IVADs in different patients nearly always resulted in distinct BSPs (probability 0.93 (IQR [0.82, 1.0]).ConclusionThis study quantitatively identified high variability in the amount of EEG suppression achieved in clinical practice when treating RSE patients. While some of this variability may arise from clinicians purposefully deviating from clinical practice guidelines, our results show that the high variability also arises in part from significant inter- and intra- individual pharmacokinetic/pharmacodynamic variation. Our results indicate that the delicate balance between maintaining sufficient EEG suppression in RSE patients and minimizing IVAD exposure in clinical practice is challenging to achieve. This may affect patient outcomes and confound studies seeking to determine an optimal amount of EEG suppression for treatment of RSE. Therefore, our analysis points to the need for developing an alternative paradigm, such as vigilant anesthetic management as happens in operating rooms, or closed-loop anesthesia delivery, for investigating and providing induced-coma therapy to RSE patients.
Burst suppression is actively studied as a control signal to guide anesthetic dosing in patients undergoing medically induced coma. The ability to automatically identify periods of EEG suppression and compactly summarize the depth of coma using the burst suppression probability (BSP) is crucial to effective and safe monitoring and control of medical coma. Current literature however does not explicitly account for the potential variation in burst suppression parameters across different scalp locations. In this study we analyzed standard 19-channel EEG recordings from 8 patients with refractory status epilepticus who underwent pharmacologically induced burst suppression as medical treatment for refractory seizures. We found that although burst suppression is generally considered a global phenomenon, BSP obtained using a previously validated algorithm varies systematically across different channels. A global representation of information from individual channels is proposed that takes into account the burst suppression characteristics recorded at multiple electrodes. BSP computed from this representative burst suppression pattern may be more resilient to noise and a better representation of the brain state of patients. Multichannel data integration may enhance the reliability of estimates of the depth of medical coma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.