Growth and development of Physcomitrium patens is endogenously regulated by phytohormones such as auxin and cytokinin. Auxin induces the transition of chloronema to caulonema. This transition is also regulated by additional factors such as quantity and quality of light, carbon supply, and other phytohormones such as strigolactones and precursors of gibberrelic acid. On the other hand, cytokinins induce the formation of bud initials following caulonema differentiation. However, the influence of external factors such as light or nutrient supply on cytokinin-mediated bud initial formation has not been demonstrated in Physcomitrium patens. This study deals with the effect of light quality and nutrient supply on cytokinin-mediated bud initial formation. Bud initial formation has been observed in wild type plants in different light conditions such as white, red, and blue light in response to exogenously supplied cytokinin as well as glucose. In addition, budding assay has been demonstrated in the cry1a mutant of Physcomitrium in different light conditions. The results indicate that carbon supply and red light enhance the cytokinin response, while blue light inhibits this process in Physcomitrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.