Computer simulations provide insight into the molecular-level details responsible for the unique properties of ionic liquids. Due to the sluggish dynamics and nanostructured nature of many ionic liquids, coarse-grained models are an important complement to fully atomistic simulations because they enable simulation of much larger system sizes and much longer times, which are often of interest. This paper reports a four-site, coarse-grained model for studying ionic liquids and their solutions. It is intended to be a generic model representative of common ionic liquids currently in use, but it is parametrized to fit the properties of 1-butyl-3-methylimidazolium hexafluorophosphate, [Im(41)][PF(6)]. The present model is a variant of one introduced in J. Phys. Chem. B 114, 8410 (2010). Reduction of ion charges to ±0.78e and fine-tuning Lennard-Jones parameters from the original model leads to a remarkable improvement in the realism of the model and surprisingly good agreement between simulation and experiment for a variety of static and dynamic properties of [Im(41)][PF(6)]. This idealized model should prove valuable for studies of solute-based dynamics and other phenomena occurring on nanosecond and longer time scales, which are not feasible with all-atom simulations.
An idealized four-site ionic liquid model having characteristics approximating those of 1-butyl-3-methylimidazolium hexafluorophosphate ([Im(41)][PF(6)]) is introduced as a low-cost alternative to existing all-atom models for purposes of simulating solute-based dynamics over nanosecond and longer time scales. The structural and energetic properties of the model are in reasonable agreement with those of [Im(41)][PF(6)] and similar ionic liquids, but the dynamics are unrealistically slow. A temperature shift of approximately 100 K is required to produce agreement between the viscosity and diffusion coefficients of the model and experimental values. Several aspects of the ion dynamics such as subdiffusive translational motions, non-Gaussian van Hove distributions, and jumplike displacements in both positions and orientations, are similar to behavior observed in supercooled liquids. Translational diffusion coefficients and rotational correlation times show roughly the proportionalities to viscosity expected from hydrodynamic models, and slip hydrodynamic calculations provide reasonable accuracy in some cases. But anomalously high rotational diffusion coefficients which decouple from viscosity at low temperature are also observed. These anomalies are explained in terms of the prevalence of 180 degrees rotational jumps coupled to the presence of marked heterogeneity in rotational motions, especially about one molecular axis. Comparisons between the dynamics observed in the ionic liquid (IL) model and a neutral mixture (NM) counterpart help to explain the origins of the distinctive dynamics in ionic liquids compared to conventional solvents. The requirement for balancing electrostatic interactions in the IL leads to uniform and interleaved distributions of cations and anions resembling a distorted ionic lattice, similar to the structure of molten NaCl. The resistance to reorganizing this structure is what leads to the slow dynamics of ionic liquids. The coupling among large collections of ions is presumably responsible for the similarity of ionic liquids to supercooled conventional liquids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.