BackgroundProduction of human monoclonal antibodies that exhibit broadly neutralizing activity is needed for preventing HIV-1 infection, however only a few such antibodies have been generated till date. Isolation of antibodies by the hybridoma technology is a cumbersome process with fewer yields. Further, the loss of unstable or slowly growing clones which may have unique binding specificities often occurs during cloning and propagation and the strongly positive clones are often lost. This has been avoided by the process described in this paper, wherein, by combining the strategy of EBV transformation and recombinant DNA technology, we constructed human single chain variable fragments (scFvs) against the third variable region (V3) of the clade C HIV-1 envelope.ResultsAn antigen specific phage library of 7000 clones was constructed from the enriched V3- positive antibody secreting EBV transformed cells. By ligation of the digested scFv DNA into phagemid vector and bio panning against the HIV-1 consensus C and B V3 peptides followed by random selection of 40 clones, we identified 15 clones that showed V3 reactivity in phage ELISA. DNA fingerprinting analysis and sequencing showed that 13 out of the 15 clones were distinct. Expression of the positive clones was tested by SDS-PAGE and Western blot. All the 13 anti-V3 scFvs showed cross-reactivity against both the clade C and B V3 peptides and did not show any reactivity against other unrelated peptides in ELISA. Preliminary neutralization assays indicated varying degrees of neutralization of clade C and B viruses. EBV transformation, followed by antigen selection of lines to identify specific binders, enabled the selection of phage from un-cloned lines for scFv generation, thus avoiding the problems of hybridoma technology. Moreover, as the clones were pretested for antigen binding, a comparatively small library sufficed for the selection of a considerable number of unique antigen binding phage. After selection, the phage clones were propagated in a clonal manner.ConclusionsThis strategy can be efficiently used and is cost effective for the generation of diverse recombinant antibodies. This is the first study to generate anti-V3 scFvs against HIV-1 Clade C.
The intricacies in various signaling routes involved in the menstrual cycle can be impacted by internal as well as external stimuli, and the role of stress, be it physical, psychological, or social, in disturbing the process could be debilitating for a woman. The global endeavor of vaccination rose to protect individuals from the severity of COVID-19, but a conjunction of a short-lived menace of menstrual disturbance in the female population came out as an unsettling side effect. An understanding of the immunological panorama in the female reproductive tract (FRT) becomes important to fathom this issue. The close-knit microenvironment in the FRT shows active microbiota in the lower FRT, but the latest findings are ascertaining the presence of low-biomass microbiota in the upper FRT as well. Concerted signaling, wherein inflammation becomes an underlying phenomenon, results when a stressor elicits molecules of the inflammatory cascade. Learning lessons from the gut microbiota, we need to address the exploration of how FRT microbiota would impose inflammation by manipulating the immune response to vaccines. Since there is a prominent sex bias in the immune response to infectious diseases in women and men, the role of sex hormones and cortisol becomes important. The treatment regimen may be considered differently in women who also consider their ovarian cycle phases. Women exert robust immune response to antigenic encounters via cell-mediated and humoral arms. The inclusion of women in vaccine trials has been marginalized over the years, which resulted in unwanted high dosage administration of vaccines in women.
Neutralizing monoclonal antibodies are being found to be increasingly useful in viral infections. In hepatitis B infection, antibodies are proven to be useful for passive prophylaxis. The preS1 region (21–47a.a.) of HBV contains the viral hepatocyte-binding domain crucial for its attachment and infection of hepatocytes. Antibodies against this region are neutralizing and are best suited for immune-based neutralization of HBV, especially in view of their not recognizing decoy particles. Anti-preS1 (21–47a.a.) antibodies are present in serum of spontaneously recovered individuals. We generated a phage-displayed scFv library using circulating lymphocytes from these individuals and selected four preS1-peptide specific scFvs with markedly distinct sequences from this library. All the antibodies recognized the blood-derived and recombinant preS1 containing antigens. Each scFv showed a discrete binding signature, interacting with different amino acids within the preS1-peptide region. Ability to prevent binding of the preS1 protein (N-terminus 60a.a.) to HepG2 cells stably expressing hNTCP (HepG2-hNTCP-C4 cells), the HBV receptor on human hepatocytes was taken as a surrogate marker for neutralizing capacity. These antibodies inhibited preS1-hepatocyte interaction individually and even better in combination. Such a combination of potentially neutralizing recombinant antibodies with defined specificities could be used for preventing/managing HBV infections, including those by possible escape mutants.
The etiopathologies behind autoimmune thyroid diseases (AITDs) unravel misbehavior of immune components leading to the corruption of immune homeostasis where thyroid autoantigens turn foe to the self. In AITDs lymphocytic infiltration in the thyroid shows up a deranged immune system charging the follicular cells of the thyroid gland (thyrocytes) leading to the condition of either hyperthyroidism or hypothyroidism. The inflammation in AITDs consistently associate with ER function due to which disturbances in the ER protein homeostasis leads to unfolded protein response (UPR) that promotes pathogenesis of autoimmunity. The roles of ER stress in the instantaneous downregulation of MHC class I molecules on thyrocytes and the relevance of IFN γ in the pathogenesis of AITD has been well-documented. Thyroglobulin being the major target of autoantibodies in most of the AITDs is because of its unusual processing in the ER. Autoimmune disorders display a conglomeration of ER stress-induced UPR activated molecules. Several epidemiological data highlight the preponderance of AITDs in women as well as its concurrence with breast cancer. Both being an active glandular system displaying endocrine activity, thyroid as well as breast tissue show various commonalities in the expression pattern of heterogenous molecules that not only participate in the normal functioning but at the same time share the blame during disease establishment. Studies on the development and progression of breast carcinoma display a deranged and uncontrolled immune response, which is meticulously exploited during tumor metastasis. The molecular crosstalks between AITDs and breast tumor microenvironment rely on active participation of immune cells. The induction of ER stress by Tunicamycin advocates to provide a model for cancer therapy by intervening glycosylation. Therefore, this review attempts to showcase the molecules that are involved in feeding up the relationship between breast carcinoma and AITDs.
Cannabinoids, commonly used for medicinal and recreational purposes, consist of various complex hydrophobic molecules obtained from Cannabis sativa L. Acting as an inhibitory molecule; they have been investigated for their antineoplastic effect in various breast tumor models. Lately, it was found that cannabinoid treatment not only stimulates autophagy-mediated apoptotic death of tumor cells through unfolded protein response (UPRER) activated downstream effectors, but also imposes cell cycle arrest. The exploitation of UPRER tumors as such is believed to be a major molecular event and is therefore employed in understanding the development and progression of breast tumor. Simultaneously, the data on clinical trials following administration of cannabinoid is currently being explored to find its role not only in palliation but also in the treatment of breast cancer. The present study summarizes new achievements in understanding the extent of therapeutic progress and highlights recent developments in cannabinoid biology towards achieving a better cure of breast cancer through the exploitation of different cannabinoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.