Identification of predictive biomarkers for ovarian cancer (OC) treatment, particularly in the platinum-resistant/refractory setting, is highly relevant for clinical management. E-cadherin, vimentin, and osteopontin (OPN) are proteins associated with tumor microenvironment (TME) remodelling that play key roles in cancer. This study aimed to evaluate the association between the staining patterns of these proteins with survival outcomes in a series of OC patients, namely in patients with platinum-resistant/refractory disease. Low E-cadherin expression and high vimentin expression in all patient groups (as well as for E-cadherin in the platinum-resistant arm) were significantly associated with longer overall survival (OS). Low cytoplasmic OPN expression (and cytoplasmic and membrane OPN in the platinum-resistant arm) were significantly associated with longer OS. In patients that responded to treatment (pegylated liposomal doxorubicin (PLD) or other), low cytoplasmic OPN expression was also associated with longer progression-free survival (PFS). In the other hand, high nuclear OPN-c expression in patients that respond to treatment was associated with longer OS and longer PFS. Longer PFS was also associated with high expression of both nuclear and cytoplasm OPN-c, in platinum-resistant patients and in those that responded to PLD. Our study indicates that the expression of E-cadherin, vimentin, and OPN may have prognostic implications. Nuclear OPN-c and cytoplasm OPN expression are putative predictive markers in platinum-resistant (PLD treated) ovarian cancer patients.
PURPOSE: To evaluate whether the neonatal leptin treatment during the first days of life can program the male reproductive organs weight and the lipid profile. METHODS: At birth 6 dams were divided into 2 groups: Leptin - each pup was injected with 50μL of recombinant rat leptin (80ng/g BW, sc), for the first 10 d of lactation; Control - each pup received the same volume of saline. After weaning, all pups received unlimited access to food until 190 days of age when they were killed. Values are given as mean ± SEM of 6 animals and Test t Student was used to analyze the results. RESULTS: The leptin treatment resulted in a significant increase in body weight (Control= 411.8±16.31; Leptin= 481.8±11.29, p=0.005) and food consumption (Control= 25.32±0.09; Leptin= 32.42±0.15, p=0.0001) and a significant reduction in triglycerides levels (Control= 540.0±117.9; Leptin= 93.25±15.21, p=0.006) and in the weight of hypothalamus (Control= 0.234±0.016; Leptin= 0.154±0.015, p=0.007), pituitary (Control= 0.104±0.0120; Leptin= 0.033±0.012, p=0.003), testis (Control= 3.75±0.055; Leptin= 3.19±0.10, p=0.002) and prostate (Control=1.641±0.1389; Leptin= 0.91±0.07, p=0.001). CONCLUSION: Leptin treatment on the first days of life can program the reproductive organs weight and the lipid profile of the progeny.
Osteopontin-c splicing isoform activates ovarian cancer progression features. Imbalanced expression of splicing factors from serine/arginine -rich and heterogeneous ribonucleoproteins families has been correlated with the generation of oncogenic splicing isoforms. Our goal was to investigate whether there is any association between the transcriptional patterns of these splicing factors in ovarian cells and osteopontin-c expression levels. We also aimed to investigate the occurrence of these splicing factors binding sites inside osteopontin exon 4 and adjacent introns. To test associations between osteopontin-c and splicing factors expression patterns, we used an in vitro model in which OVCAR-3 cells overexpressing osteopontin-c (OVCAR-3/OPNc) presented higher transcriptional levels of osteopontin-c than two other ovarian carcinoma cells (TOV-112D, SKOV-3) and ovarian non-tumoral cell lines (IOSE 364 and IOSE 385). The transcriptional levels of osteopontin-c, serine/arginine-rich, and hnRNP factors were evaluated using real-time polymerase chain reaction. Human Splice Finder software was used to search for putative splicing factor binding sites in osteopontin genomic regions. OVCAR-3/OPNc cells presented higher transcriptional levels of hnRNP than serine/arginine-rich when compared to TOV-112D, SKOV-3, and IOSE cells. TOV-112D and SKOV-3 cells also overexpressed hnRNP in relation to serine/arginine-rich transcripts. Putative binding sites for these splicing factors have been predicted on osteopontin exon 4 and their upstream and downstream intronic regions. Our data showed that higher osteopontin-c expression levels are associated with a predominance of hnRNP in relation to serine/arginine-rich transcripts and that osteopontin exon 4 and adjacent intronic sequences contain predicted binding sites for some of these tested splicing factors. In conclusion, differential expression of these splicing factors in ovarian cancer cells could be one of the putative mechanisms leading to aberrant splicing of the osteopontin primary transcript. Future work, aiming to control ovarian cancer progression by downregulating osteopontin-c levels, could include strategies that also regulate heterogeneous ribonucleoproteins and serine/arginine-rich expression levels in order to modulate osteopontin splicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.