This paper deals with a novel method which allows the serial connection of Insulated Gate Bipolar Transistors (IGBTs). The different dynamic characteristics of serially connected IGBTs during turn ON and OFF cause a short-term overvoltage stress in the transistors. In contrary to the commonly used techniques, the presented method reduces additional commutation losses by actively correcting turn ON and OFF delays. The presented method uses overvoltages as measured by a peak detector. The correction circuit doesn't require a high speed Analog-Digital converter (ADC) or high speed computation. The target power switch unit consists of two serial connected transistors with two identical parallel branches. The wellknown 2-level inverter topology equipped with the power switch unit can be connected directly to the high-voltage grid. This converter topology was demanded by our industry partner for 11 MW mining machines. The paper contains a laboratory experiment conducted on a serial-parallel IGBT power switch unit with a tested output power of 1 kW. Index Terms-Power semiconductor switches, insulated gate bipolar transistors, driver circuits, digital signal processors, field programmable gate arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.