Surface modification of nanocrystalline TiO(2) particles (45 Å) with catecholate-type ligands consisting of an extended aromatic ring system, i.e., 2,3-dihydroxynaphthalene and anthrarobin, was found to alter the optical properties of the nanoparticles in a similar way to modification with catechol. The formation of inner-sphere charge-transfer (CT) complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and the reduction of the band gap upon the increase of the electron delocalization on the inclusion of additional rings. The binding structures were investigated by FTIR spectroscopy. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of catecholate type (binuclear bidentate binding-bridging) thus restoring the six-coordinated octahedral geometry of surface Ti atoms. From the Benesi-Hildebrand plot, stability constants in methanol/water = 90/10 solutions at pH 2 of the order 10(3) M(-1) have been determined. Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain vibrational frequencies of charge transfer complexes, and the calculated values were compared with the experimental data.
The surface modification of nanocrystalline TiO2 particles (45 Å) with catecholate-type ligands having different electron donating/electron withdrawing substituent groups, specifically 3-methylcatechol, 4-methylcatechol, 3-methoxycatechol, 3,4-dihydroxybenzaldehyde and 4-nitrocatechol, was found to alter the optical properties of nanoparticles in a similar way to catechol. The formation of the inner-sphere charge-transfer (CT) complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and a reduction of the effective band gap, being slightly less pronounced in the case of electron withdrawing substituents. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of the catecholate type (binuclear bidentate binding-bridging) thus restoring six-coordinated octahedral geometry of surface Ti atoms. From the absorption measurements (Benesi-Hildebrand plot), the stability constants in methanol/water = 90/10 solutions at pH 2 in the order of 10(3) M(-1) have been determined. The binding structures were investigated by using FTIR spectroscopy. Thermal stability of CT-complexes was investigated by using TG/DSC/MS analysis. Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain the vibrational frequencies of charge transfer complexes, and the calculated values were compared with the experimental data.
The surface modification of nanocrystalline TiO2 particles (45 Å) with salicylate-type ligands consisting of an extended aromatic ring system, specifically 3-hydroxy-2-naphthoic acid, 3,5-dihydroxy-2-naphthoic acid and 3,7-dihydroxy-2-naphthoic acid, was found to alter the optical properties of nanoparticles in a similar way to salicylic acid. The formation of the inner-sphere charge-transfer (CT) complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and a reduction in the band gap upon the increase in the electron delocalization when including an additional ring. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of a salicylate-type (binuclear bidentate binding-bridging) thus restoring the six-coordinated octahedral geometry of surface Ti atoms. From both absorption measurements in methanol/water = 90/10 solutions and steady-state quenching measurements of modifier fluorescence upon binding to TiO2 in aqueous solutions, stability constants in the order of 10(3) M(-1) have been determined at pH 2 and pH 3. Fluorescence lifetime measurements, in the presence and absence of colloidal TiO2 nanoparticles, indicated that the fluorescence quenching process is primarily static quenching, thus proving the formation of a nonfluorescent CT complex. The binding structures were investigated by using FTIR spectroscopy. Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain the vibrational frequencies of charge transfer complexes, and the calculated values were then compared with the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.