In fuzzified probability theory, a classical probability space (Ω, A, p) is replaced by a generalized probability space (Ω, ℳ(A), ∫(.) dp), where ℳ(A) is the set of all measurable functions into [0,1] and ∫(.)dp is the probability integral with respect to p. Our paper is devoted to the transition from p to ∫(.) dp. The transition is supported by the following categorical argument: there is a minimal category and its epireflective subcategory such that A and ℳ(A) are objects, probability measures and probability integrals are morphisms, ℳ(A) is the epireflection of A, ∫(.) dp is the corresponding unique extension of p, and ℳ(A) carries the initial structure with respect to probability integrals. We discuss reasons why the fuzzy random events are modeled by ℳ(A) equipped with pointwise partial order, pointwise Łukasiewicz operations (logic) and pointwise sequential convergence. Each probability measure induces on classical random events an additive linear preorder which helps making decisions. We show that probability integrals can be characterized as the additive linearizations on fuzzy random events, i.e., sequentially continuous maps, preserving order, top and bottom elements.
In a fuzzified probability theory, random events are modeled by measurable functions into [0,1] and probability measures are replaced with probability integrals. The transition from Boolean two-valued logic to Lukasiewicz multivalued logic results in an upgraded probability theory in which we define and study asymmetrical stochastic dependence/independence and conditional probability based on stochastic channels and joint experiments so that the classical constructions follow as particular cases. Elementary categorical methods enable us to put the two theories into a perspective.
The aim of this paper is to define a convergence in measure m, where m is an intuitionistic fuzzy state. We prove a version of weak law of large numbers for a sequence of independent intuitionistic fuzzy observables, too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.