This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP), band-reject (BR), low-pass (LP), high-pass (HP), and all-pass (AP) functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.
Near infrared spectroscopy is a non-destructive technique used for measuring and analyzing chemical compositions in an organic sample. The calibration equation and spectrum are used for calculating the prediction result. In this case, the spectrum provides very important data; therefore, the accuracy of the near infrared prediction system depends on the sample preparation because the spectrum is sensitive to physical property conditions such as sample temperature. When the sample temperature has changed, the absorption peak will be shifted nonlinearly in both the absorption value and wavelengths around 840 nm and 940 nm (in the short regions). Consequently, if applying a calibration model developed from spectra of a constant sample temperature by using a linear multivariate data analysis to predict the samples with different temperature conditions, the average of difference between actual values and predicted values (bias) will occur. Therefore, the objective of this research was to develop a spectra temperature compensation method namely the temperature compensation coefficient method by applying direct standardization algorithm. By the use of temperature compensation coefficient, the temperature effect can be solved and the accurate prediction results can be obtained. Moreover, the performance of temperature compensation coefficient was investigated and compared with the fixed temperature and three compensation methods, such as generalized least squares weighting, external parameter orthogonalization, and global calibration. The results indicated that temperature compensation coefficient method and the global calibration gave the best result with high accuracy of the lowest bias at 95% confident level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.