This is the first description of cultivated icosahedral single-stranded DNA (ssDNA) phages isolated on heterotrophic marine bacterioplankton and with Bacteroidetes hosts. None of the 8 phages stained well with DNA-binding stains, suggesting that in situ abundances of ssDNA phages are drastically underestimated using conventional methods for enumeration.
Heterotrophic bacteria provide the critical link in the microbial loop by converting dissolved organic matter (DOM) into particulate form. In this study, DOM was prepared from recently isolated estuarine bacterial strain Vibrio sp. (DSM14379) grown at different salinities [0.2%, 0.5%, 3%, 5%, or 10% (w/v)], washed, concentrated, and lysed by autoclaving. The corresponding lysate-containing media were designated LM(0.2), LM(0.5), LM(3), LM(5), and LM(10). Vibrio sp. cells grown at different salinities had similar C/N/P ratios, but different C/S ratios, different trace element composition, and different 2D gel electrophoresis protein profiles. Pseudoalteromonas sp. (DSM06238) isolated from a similar environment was able to grow on all lysates, and its biomass production was dependent on lysate type. The highest growth rate and biomass production of Pseudoalteromonas sp. at saturation lysate concentrations were observed in LM(3). The biomass production at saturation lysate concentrations was about 3-fold higher as compared to LM(0.2) and LM(10). The initial respiration rate, intracellular adenosine triphosphate (ATP) levels, and (3)H-Leu and (3)H-TdR incorporation rates were lowest in LM(3). On the other hand, in LM(0.2) or LM(10) lysates the situation was reversed, the growth rates and biomass production were lowest, whereas (3)H-Leu and (3)H-TdR incorporation, respiration rates, as well as ATP levels, were highest. These results imply uncoupling of catabolism from growth in either high- or low-salinity lysates. The results also suggest that differences in organic carbon quality generated during Vibrio sp. growth at different NaCl concentrations were propagated through the simple microbial loop, which may have important ecological implications for higher trophic levels that depend on microbial grazing.
The aim of this study was to analyze the bacterial community in the production line of a calcium carbonate filler production company and to investigate possible causes for bacterial presence. Throughout 2012, 24 carbonate slurry and six groundwater samples were analyzed. Pseudomonas and Microbacterium were the most frequent contaminants in the slurry, whereas Pseudomonas and Brevundimonas dominated the groundwater samples. Of the 43 different bacterial strains isolated, only five were found both in the slurry and the groundwater, indicating that the latter was not a major source of contamination. The efficacy of 54 commercial biocidal formulations was tested against an artificial bacterial consortium composed of selected slurry isolates. A formulation containing 7.5-15% (v v) bronopol and 1.0-2.5% (v v) [chloroisothiazolinone (CIT) + methylisothiazolinone (MIT)] exhibited the highest efficacy. Of the possible causes for bacterial presence, sporogenesis and biocide adsorption to carbonate particles were found to be less probable compared to bacterial adsorption to particles, and the acquisition of resistance to biocides.
All physico-chemical parameters that affect bacterial growth rate will also affect bacterial molecular composition, which in turn influences the chemical composition of bacterial lysate and its turnover rate in the ecosystem. To produce qualitatively different lysates, Vibrio sp. cells were grown under different pH, salt, or temperature conditions in rich growth media and then washed and lysed by autoclaving. Both the absolute concentrations and the ratios between elements in the lysates varied with different growth conditions, implying differences in lysate quality. Either Pseudoalteromonas sp. or Vibrio sp. was grown on the lysates at non-limiting lysate concentrations. Different lysates supported growth rates of Pseudoalteromonas sp. in the range from 0.25 to 1.53 h(-1). On the other hand, growth rates of Vibrio sp. grown on its own lysates were around 0.4 h(-1) and were not dependent on lysate quality. Two orders of magnitude decrease in Zn concentration in Vibrio sp. cells grown on different lysates as compared to cells grown on rich growth medium suggested that Zn might be a factor limiting growth. In the simple microbial loop studied, the initial difference in lysate quality was preserved in Pseudoalteromonas sp., whereas Vibrio sp. decreased the initial differences in lysate quality, thereby neutralizing the primary effect of environmental conditions on carbon turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.