A combined mesoscale and storm-scale ensemble data-assimilation and prediction system is developed using the Advanced Research core of the Weather Research and Forecasting Model (WRF-ARW) and the ensemble adjustment Kalman filter (EAKF) from the Data Assimilation Research Testbed (DART) software package for a short-range ensemble forecast of an 8 May 2003 Oklahoma City, Oklahoma, tornadic supercell storm. Traditional atmospheric observations are assimilated into a 45-member mesoscale ensemble over a continental U.S. domain starting 3 days prior to the event. A one-way-nested 45-member storm-scale ensemble is initialized centered on the tornadic event at 2100 UTC on the day of the event. Three radar observation assimilation and forecast experiments are conducted at storm scale using a single-moment, a semidouble-moment, and a full double-moment bulk microphysics scheme. Results indicate that the EAKF initializes the supercell storm into the model with good accuracy after a 1-h-long radar observation assimilation window. The ensemble forecasts capture the movement of the main supercell storm that matches reasonably well with radar observations. The reflectivity structure of the supercell storm using a double-moment microphysics scheme appears to compare better to the observations than that using a single-moment scheme. In addition, the ensemble system predicts the probability of a strong low-level vorticity track of the tornadic supercell that correlates well with the observed rotation track. The rapid 3-min update cycle of the storm-scale ensemble from the radar observations seems to enhance the skill of the ensemble and the confidence of an imminent tornado threat. The encouraging results obtained from this study show promise for a short-range probabilistic storm-scale forecast of supercell thunderstorms, which is the main goal of NOAA's Warn-on-Forecast initiative.
Postevent damage surveys conducted during the Bow Echo and Mesoscale Convective Vortex Experiment demonstrate that the severe thunderstorm wind reports in Storm Data served as a poor characterization of the actual scope and magnitude of the surveyed damage. Contrasting examples are presented in which a few reports grossly underrepresented a significant event (in terms of property damage and actual areal coverage of damage), while a large number of reports overrepresented a relatively less significant event. Explanations and further discussion of this problem are provided, as are some of the implications, which may include a skewed understanding of how and when systems of thunderstorms cause damage. A number of recommendations pertaining to severe wind reporting are offered.
An object-based verification methodology for the NSSL Experimental Warn-on-Forecast System for ensembles (NEWS-e) has been developed and applied to 32 cases between December 2015 and June 2017. NEWS-e forecast objects of composite reflectivity and 30-min updraft helicity swaths are matched to corresponding reflectivity and rotation track objects in Multi-Radar Multi-Sensor system data on space and time scales typical of a National Weather Service warning. Object matching allows contingency-table-based verification statistics to be used to establish baseline performance metrics for NEWS-e thunderstorm and mesocyclone forecasts. NEWS-e critical success index (CSI) scores of reflectivity (updraft helicity) forecasts decrease from approximately 0.7 (0.4) to 0.4 (0.2) over 3 h of forecast time. CSI scores decrease through the forecast period, indicating that errors do not saturate during the 3-h forecast. Lower verification scores for rotation track forecasts are primarily a result of a high-frequency bias. Comparison of different system configurations used in 2016 and 2017 shows an increase in skill for 2017 reflectivity forecasts, attributable mainly to improvements in the forecast initial conditions. A small decrease in skill in 2017 rotation track forecasts is likely a result of sample differences between 2016 and 2017. Although large case-to-case variation is present, evidence is found that NEWS-e forecast skill improves with increasing object size and intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.