A general protocol for the palladium-catalyzed dearomative trimethylenemethane [3+2] cycloaddition reaction with simple nitroarene substrates is described. This methodology leads to the exclusive formation of the dearomatized alicyclic products without subsequent rearomatization. The reaction is tolerant toward a broad range of heterocyclic and benzenoid substrates. The use of chiral bisdiamidophosphite ligands enabled the development of an enantioselective variant of this transformation, representing one of the rare examples of an asymmetric catalytic dearomatization process.
The Bergman cyclization has long been known to produce polymers as side products. More recently, this attribute has been harnessed for the production of conjugated materials. However, the structures of these polymers have not been established. To resolve this question, the metal-catalyzed polymerization of 1,4-dibromonaphthalene and thermal polymerization of o-diethynylbenzene were conducted. Two distinct polymers were obtained. Comparison of IR spectroscopy, MALDI-TOF MS, solid-state NMR spectroscopy, UV-vis reflectance spectroscopy, and pyrolysis GC-MS data indicates that only one of the polymers is consistent with poly(1,4-naphthalene).
The marcfortines are complex secondary metabolites that show potent anthelmintic activity and are characterized by the presence of a bicyclo[2.2.2]diazaoctane fused to a spirooxindole. Herein, we report the synthesis of two members of this family. The synthesis of marcfortine B utilizes a carboxylative TMM cycloaddition to establish the spirocyclic core, followed by an intramolecular Michael addition and oxidative radical cyclization to access the strained bicyclic ring system. In addition, the first asymmetric synthesis of (–)-marcfortine C is described. The key step involves a cyano-substituted TMM cycloaddition, which proceeds in nearly quantitative yield with high diastereo- and enantioselectivity. The resulting chiral center was used to establish all remaining stereocenters in the natural product.
The palladium-catalyzed [3+2] cycloaddition of trimethylenemethane (TMM) with aldehydes is a direct and efficient route to methylenetetrahydrofurans. Herein we describe the first asymmetric synthesis of methylenetetrahydrofurans utilizing a palladium-TMM complex in the presence of a novel phosphoramidite ligand possessing a stereogenic phophorus. The method allows for the formation of chiral disubstituted tetrahydrofurans in good yields and enantioselectivies.
An approach to 2,2-disubstituted 4-methylenetetrahydrofurans has been developed utilizing a cycloaddition of trimethylenemethane with aryl ketones, with formation of the products in up to 96% yield and 95% ee. The reaction is catalyzed by palladium in the presence of a phosphoramidite ligand possessing a stereogenic phosphorus, where only a single epimer at phosphorus yields the active catalyst. The identity of this epimer and the origin of its effect on reactivity are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.