We measured mercury (Hg) isotope ratios in sediments and various estuarine organisms (green crab, blue mussel, killifish, eider) to investigate methylmercury (MMHg) sources and exposure pathways in five Northeast coast (U.S.) estuaries. The mass independent Hg isotopic compositions (MIF; Δ199Hg) of the sediments were linearly correlated with the sediment 1/Hg concentrations (Δ199Hg: r2 = 0.77, p < 0.05), but the mass dependent isotope compositions (MDF; δ202Hg) were not (r2 = 0.26, p = 0.16), reflecting inputs of anthropogenic Hg sources with varying δ202Hg. The estuarine organisms all display positive Δ199Hg values (0.21 to 0.98 ‰) indicating that MMHg is photodegraded to varying degrees (5–12%) prior to entry into the food web. The δ202Hg and Δ199Hg values of most organisms can be explained by a mixture of MMHg and inorganic Hg from sediments. At one contaminated site mussels have anomalously high δ202Hg, indicating exposure to a second pool of MMHg, compared to sediment, crabs and fish. Eiders have similar Δ199Hg as killifish but much higher δ202Hg, suggesting that there is an internal fractionation of δ202Hg in birds. Our study shows that Hg isotopes can be used to identify multiple anthropogenic inorganic Hg and MMHg sources and determine the degree of photodegradation of MMHg in estuarine food webs.
Understanding full annual cycle movements of long-distance migrants is essential for delineating populations, assessing connectivity, evaluating crossover effects between life stages, and informing management strategies for vulnerable or declining species. We used implanted satellite transmitters to track up to 2 years of annual cycle movements of 52 adult female White-winged Scoters (Melanitta fusca (Linnaeus, 1758)) captured in the eastern United States and Canada. We used these data to document annual cycle phenology; delineate migration routes; identify primary areas used during winter, stopover, breeding, and molt; and assess the strength of migratory connectivity and spatial population structure. Most White-winged Scoters wintered along the Atlantic coast from Nova Scotia to southern New England, with some on Lake Ontario. White-winged Scoters followed four migration routes to breeding areas from Quebec to the Northwest Territories. Principal postbreeding molting areas were in James Bay and the St. Lawrence River estuary. Migration phenology was synchronous regardless of winter or breeding origin. Cluster analyses delineated two primary breeding areas: one molting area and one wintering area. White-winged Scoters demonstrated overall weak to moderate connectivity among life stages, with molting to wintering connectivity the strongest. Thus, White-winged Scoters that winter in eastern North America appear to constitute a single continuous population.
Southern New England provides key wintering habitat for White-winged Scoters (Melanitta fusca). This area has also pioneered the development of offshore wind energy in North America. The U.S. Bureau of Ocean Energy Management (BOEM) has established 9 Wind Energy Area (WEA) lease blocks along the Atlantic Outer Continental Shelf in areas that may provide important staging and wintering habitat for scoters and other species of sea ducks. Concern over the potential impact of offshore wind energy on sea duck populations has led to efforts to develop models to understand their distribution, habitat use, and site fidelity. We used satellite telemetry to document winter phenology and site fidelity, as well as fine-scale resource selection and habitat use, of 40 White-winged Scoters along the southern New England continental shelf. Scoters spent over half of the annual cycle on the wintering grounds and demonstrated a high degree of interannual site fidelity to composite core-use areas. Sizes of individual 50% core-use home ranges were variable (X¯ = 868 km2; range: 32–4,220 km2) and individual 95% utilization distributions ranged widely (X¯ = 4,388 km2; range: 272–18,235 km2). More than half of all tagged birds occupied 2 or more discrete core-use areas that were up to 400 km apart. Throughout the study area, scoters selected areas with lower salinity, lower sea surface temperature, higher chlorophyll-a concentrations, and higher hard-bottom substrate probability. Resource selection function models classified 18,649 km2 (23%) of the study area as high probability of use, which included or immediately bordered ~420 km2 of proposed WEA lease blocks. Future offshore wind energy developments in the region should avoid key habitats highlighted by this study and carefully consider the environmental characteristics selected by sea ducks when planning and siting future WEAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.