NASA has recently updated spacecraft design requirements for protecting crewmembers during dynamic spaceflight phases. The details of the update are available in a NASA publication (NASA TM-2013-217380) and are summarized here. Previously, NASA's occupant protection requirements relied primarily on the multiaxial dynamic response criterion, which NASA refers to as the Brinkley Dynamic Response Criteria (BDRC). Although simple to implement, there are several important ground rules that must be met for the injury predictions to be applicable. These include proper restraint, flail controls, proper seating support, pressure suit considerations, head protection including consideration of helmet mass, and spaceflight deconditioning. Even if these ground rules are met, there are limitations to the model that must be addressed, including: model validation, sex differences, age effects, anthropometry effects, and differences between the physical fitness of military test subjects and future crewmembers. To address these limitations, new injury assessment reference values (IARV) have been prescribed for the 5(th) percentile female and 95(th) percentile male Hybrid III anthropomorphic test devices (ATD). These metrics are head-injury criterion, head-rotational acceleration, neck injury criterion, neck-axial-force limits, flail prevention, and lumbar-axial compression force. Using these new ATD IARVs, NASA can have increased confidence that vehicle designs mitigate the risk of injury during dynamic phases of flight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.