Lymphatic dysfunction is associated with the progression of many cardiovascular disorders due to their role in maintaining tissue fluid homeostasis. Promoting new lymphatic vessels (lymphangiogenesis) is a promising strategy to reverse these cardiovascular disorders via restoring lymphatic function. Vascular endothelial growth factor (VEGF) members VEGF-C and VEGF-D are both potent candidates for stimulating lymphangiogenesis, though maintaining spatial and temporal control of these factors represents a challenge to developing efficient therapeutic lymphangiogenic applications. Injectable alginate hydrogels have been useful for the controlled delivery of many angiogenic factors, including VEGF-A, to stimulate new blood vasculature. However, the utility of these tunable hydrogels for delivering lymphangiogenic factors has never been closely examined. Thus, the objective of this study was to utilize ionically cross-linked alginate hydrogels to deliver VEGF-C and VEGF-D for potential lymphangiogenic applications. We demonstrated that lymphatic endothelial cells (LECs) are sensitive to temporal presentation of VEGF-C and VEGF-D but with different responses between the factors. The greatest LEC mitogenic and sprouting response was observed for constant concentrations of VEGF-C and a high initial concentration that gradually decreased over time for VEGF-D. Additionally, alginate hydrogels provided sustained release of radiolabeled VEGF-C and VEGF-D. Finally, VEGF-C and VEGF-D released from these hydrogels promoted a similar number of LEC sprouts as exogenously added growth factors and new vasculature in vivo via a chick chorioallantoic membrane (CAM) assay. Overall, these findings demonstrate that alginate hydrogels can provide sustained and bioactive release of VEGF-C and VEGF-D which could have applications for therapeutic lymphangiogenesis.
Hydrogel systems are an appealing class of therapeutic delivery vehicles, though it can be challenging to design hydrogels that maintain desired spatiotemporal presentation of therapeutic cargo. In this work, we propose a different approach in which computational tools are developed that creates a theoretical representation of the hydrogel polymer network to design hydrogels with predefined mesh properties critical for controlling therapeutic delivery. We postulated and confirmed that the computational model could incorporate properties of alginate polymers, including polymer content, monomer composition and polymer chain radius, to accurately predict cross-link density and mesh size for a wide range of alginate hydrogels. Additionally, the simulations provided a robust strategy to determine the mesh size distribution and identified properties to control the mesh size of alginate hydrogels. Furthermore, the model was validated for additional hydrogel systems and provided a high degree of correlation (R 2 > 0.95) to the mesh sizes determined for both fibrin and polyethylene glycol (PEG) hydrogels. Finally, a full factorial and Box-Behnken design of experiments (DOE) approach utilized in combination with the computational model predicted that the mesh size of hydrogels could be varied from approximately 5 nm to 5 μm through controlling properties of the polymer network. Overall, this computational model of the hydrogel polymer network provides a rapid and accessible strategy to predict hydrogel mesh properties and ultimately design hydrogel systems with desired mesh properties for potential therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.