The human cationic host defense peptide LL-37 has a broad range of immunomodulatory, anti-infective functions. A synthetic innate defense regulator peptide, innate defense regulator 1 (IDR-1), based conceptually on LL-37, was recently shown to selectively modulate innate immunity to protect against a wide range of bacterial infections. Using advanced proteomic techniques, ELISA, and Western blotting procedures, GAPDH was identified as a direct binding partner for LL-37 in monocytes. Enzyme kinetics and mobility shift studies also indicated LL-37 and IDR-1 binding to GAPDH. The functional relevance of GAPDH in peptide-induced responses was demonstrated by using gene silencing of GAPDH with small interfering RNA (siRNA). Previous studies have established that the induction of chemokines and the anti-inflammatory cytokine IL-10 are critical immunomodulatory functions in the anti-infective properties of LL-37 and IDR-1, and these functions are modulated by the MAPK p38 pathway. Consistent with that, this study demonstrated the importance of the GAPDH interactions with these peptides since gene silencing of GAPDH resulted in impaired p38 MAPK signaling, downstream chemokine and cytokine transcriptional responses induced by LL-37 and IDR-1, and LL-37-induced cytokine production. Bioinformatic analysis, using InnateDB, of the major interacting partners of GAPDH indicated the likelihood that this protein can impact on innate immune pathways including p38 MAPK. Thus, this study has demonstrated a novel function for GAPDH as a mononuclear cell receptor for human cathelicidin LL-37 and immunomodulatory IDR-1 and conclusively demonstrated its relevance in the functioning of cationic host defense peptides.
Forestry is a valuable natural resource for many countries. Rapid production of large quantities of genetically improved and uniform seedlings for restocking harvested lands is a key component of sustainable forest management programs. Clonal propagation through somatic embryogenesis has the potential to meet this need in conifers and can offer the added benefit of ensuring consistent seedling quality. Although in commercial use, mass production of conifers through somatic embryogenesis is relatively new and there are numerous biological unknowns regarding this complex developmental pathway. To aid in unravelling the embryo developmental process, two-dimensional electrophoresis was employed to quantitatively assess the expression levels of proteins across four stages of somatic embryo maturation in white spruce (0, 7, 21 and 35 days post abscisic acid treatment). Forty-eight differentially expressed proteins have been identified, which display a significant change in abundance as early as day 7 of embryo development. These proteins are involved in a variety of cellular processes, many of which have not previously been associated with embryo development. The identification of these proteins was greatly assisted by the availability of a substantial expressed sequence tag (EST) resource developed for white, sitka and interior spruce. The combined use of these spruce ESTs in conjunction with GenBank accessions for other plants improved the rate of protein identification from 38% to 62% when compared with GenBank alone using automated, high-throughput techniques. This underscores the utility of EST resources in a proteomic study of any species for which a genome sequence is unavailable.
SUMMARYInduction of terpene synthase (TPS) gene expression and enzyme activity is known to occur in response to various chemical and biological stimuli in several species of spruce (genus Picea). However, high sequence identity between TPS family members has made it difficult to determine the induction patterns of individual TPS at the protein and transcript levels and whether specific TPS enzymes respond differentially to treatment. In the present study we used a multi-level approach to measure the induction and activity of TPS enzymes in protein extracts of Norway spruce (Picea abies) bark tissue following treatment with methyl jasmonate (MeJA). Measurements were made on the transcript, protein, enzyme activity and metabolite levels. Using a relatively new proteomics application, selective reaction monitoring (SRM), it was possible to differentiate and quantitatively measure the abundance of several known TPS proteins and three 1-deoxy-D-xylulose 5-phosphate synthase (DXS) isoforms in Norway spruce. Protein levels of individual TPS and DXS enzymes were differentially induced upon MeJA treatment and good correlation was generally observed between induction of transcripts, proteins, and enzyme activities. Most of the mono-and diterpenoid metabolites accumulated with similar temporal patterns of induction as part of the coordinated multi-compound chemical defense response. Protein and enzyme activity levels of the monoTPS (+)-3-carene synthase and the corresponding accumulation of (+)-3-carene was induced to a higher fold change than any other TPS or metabolite measured, indicating an important role in the induced terpenoid defense response in Norway spruce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.