Multifunctional nanoparticles hold promise as the next generation of therapeutic delivery and imaging agents. Nanoparticles comprising many types of materials are being tested for this purpose, including plant viral capsids. It has been found that Red clover necrotic mosaic virus (RCNMV) can be loaded with significant amounts of therapeutic molecules with molecular weights of 600 or even greater. Formulation of RCNMV into a plant viral nanoparticle (PVN) involves the loading of cargo and attachment of peptides. In this study, we show that targeting peptides (less than 16 amino acids) can be conjugated to the capsid using the heterobifunctional chemical linker sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The uptake of both native RCNMV capsids and peptide-conjugated RCNMV was tested in the HeLa cell line for peptides with and without fluorescent labels. Uptake of RCNMV conjugate with a CD46 targeting peptide was monitored by flow cytometry. When formulated PVNs loaded with doxorubicin and armed with a targeting peptide were delivered to HeLa cells, a cytotoxic effect was observed. The ability to modify RCNMV for specific cell targeting and cargo delivery offers a method for the intracellular delivery of reagents for research assays as well as diagnostic and therapeutic applications.
Virus delivery vectors are one among the many nanomaterials that are being developed as drug delivery materials. This chapter focuses on methods utilizing plant virus nanoparticles (PVNs) synthesized from the Red clover necrotic mosaic virus (RCNMV). A successful vector must be able to effectively carry and subsequently deliver a drug cargo to a specific target. In the case of the PVNs, we describe two types of ways cargo can be loaded within these structures: encapsidation and infusion. Several targeting approaches have been used for PVNs based on bioconjugate chemistry. Herein, examples of such approaches will be given that have been used for RCNMV as well as for other PVNs in the literature. Further, we describe characterization of PVNs, in vitro cell studies that can be used to test the efficacy of a targeting vector, and potential routes for animal administration.
PVNs administered at lower repeated doses provide both pharmacologic and efficacy advantages compared with PLD.
Immunoaffinity separation of large multivalent species such as viruses is limited by the stringent elution conditions necessary to overcome their strong and highly avid interaction with immobilized affinity ligands on the capture surface. Here we present an alternate strategy that harnesses the avidity effect to overcome this limitation. Red clover necrotic mosaic virus (RCNMV), a plant virus relevant to drug delivery applications, was chosen as a model target for this study. An RCNMV binding protein (RBP) with modest binding affinity (K(D) ~100 nM) was generated through mutagenesis of the Sso7d protein from Sulfolobus solfataricus and used as the affinity ligand. In our separation scheme, RCNMV is captured by a highly avid interaction with RBP immobilized on a nickel surface through a hexahistidine (6xHis) tag. Subsequently, disruption of the multivalent interaction and release of RCNMV is achieved by elution of RBP from the nickel surface. Finally, RCNMV is separated from RBP by exploiting the large difference in their molecular weights (~8 MDa vs. ~10 kDa). Our strategy not only eliminates the need for harsh elution conditions, but also bypasses chemical conjugation of the affinity ligand to the capture surface. Stable non-antibody affinity ligands to a wide spectrum of targets can be generated through mutagenesis of Sso7d and other hyperthermophilic proteins. Therefore, our approach may be broadly relevant to cases where capture of large multivalent species from complex mixtures and subsequent release without the use of harsh elution conditions is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.