We synthesize vertically oriented core-shell nanowires with substoichiometric MoO(3) cores of ∼20-50 nm and conformal MoS(2) shells of ∼2-5 nm. The core-shell architecture, produced by low-temperature sulfidization, is designed to utilize the best properties of each component material while mitigating their deficiencies. The substoichiometric MoO(3) core provides a high aspect ratio foundation and enables facile charge transport, while the conformal MoS(2) shell provides excellent catalytic activity and protection against corrosion in strong acids.
Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance.
We report the phase transformation of hematite (α-Fe2O3) single crystal nanowires to crystalline FeS nanotubes using sulfurization with H2S gas at relatively low temperatures. Characterization indicates that phase pure hexagonal FeS nanotubes were formed. Time-series sulfurization experiments suggest epitaxial growth of FeS as a shell layer on hematite. This is the first report of hollow, crystalline FeS nanotubes with NiAs structure and also on the Kirkendall effect in solid-gas reactions with nanowires involving sulfurization.
Significant interest has grown in
the development of earth-abundant
and efficient catalytic materials for hydrogen generation. Layered
transition metal dichalcogenides present opportunities for efficient
electrocatalytic systems. Here, we report the modification of 1D MoO
x
/MoS2 core–shell nanostructures
by lithium intercalation and the corresponding changes in morphology,
structure, and mechanism of H2 evolution. The 1D nanowires
exhibit significant improvement in H2 evolution properties
after lithiation, reducing the hydrogen evolution reaction (HER) onset
potential by ∼50 mV and increasing the generated current density
by ∼600%. The high electrochemical activity in the nanowires
results from disruption of MoS2 layers in the outer shell,
leading to increased activity and concentration of defect sites. This
is in contrast to the typical mechanism of improved catalysis following
lithium exfoliation, i.e., crystal phase transformation. These structural
changes are verified by a combination of Raman and X-ray photoelectron
spectroscopy (XPS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.