Shape‐memory polymers (SMPs) are self‐adjusting, smart materials in which shape changes can be accurately controlled at specific, tailored temperatures. In this study, the glass transition temperature (Tg) is adjusted between 28 and 55 °C through synthesis of copolymers of methyl acrylate (MA), methyl methacrylate (MMA), and isobornyl acrylate (IBoA). Acrylate compositions with both crosslinker densities and photoinitiator concentrations optimized at fractions of a mole percent demonstrate fully recoverable strains at 807% for a Tg of 28 °C, at 663% for a Tg of 37 °C, and at 553% for a Tg of 55 °C. A new compound, 4,4′‐di(acryloyloxy)benzil (referred to hereafter as Xini) in which both polymerizable and initiating functionalities are incorporated in the same molecule, was synthesized and polymerized into acrylate shape‐memory polymers, which were thermomechanically characterized yielding fully recoverable strains above 500%. The materials synthesized in this work were compared to an industry standard thermoplastic SMP, Mitsubishi's MM5510, which showed failure strains of similar magnitude, but without full shape recovery: residual strain after a single shape‐memory cycle caused large‐scale disfiguration. The materials in this study are intended to enable future applications where both recoverable high‐strain capacity and the ability to accurately and independently position Tg are required.
Neural interfaces have traditionally been fabricated on rigid and planar substrates, including silicon and engineering thermoplastics. However, the neural tissue with which these devices interact is both 3D and highly compliant. The mechanical mismatch at the biotic-abiotic interface is expected to contribute to the tissue response that limits chronic signal recording and stimulation. In this work, novel ternary thiol-ene/acrylate polymer networks are used to create softening substrates for neural recording electrodes. Thermomechanical properties of the substrates are studied through differential scanning calorimetry and dynamic mechanical analysis both before and after exposure physiological conditions. This substrate system softens from more than 1 GPa to 18 MPa on exposure to physiological conditions: reaching body temperature and taking up less than 3% fluid. The impedance of 177 µm(2) gold electrodes electroplated with platinum black fabricated on these substrates is measured to be 206 kΩ at 1 kHz. Specifically, intracortical electrodes are fabricated, implanted, and used to record driven neural activity. This work describes the first substrate system that can use the full capabilities of photolithography, respond to physiological conditions by softening markedly after insertion, and record driven neural activity for 4 weeks.
A novel processing method is described using photolithography to pattern thin‐film flexible electronics on shape memory polymer substrates with mechanical properties tailored to improve biocompatability and enhance adhesion between the polymer substrate and metal layers. Standard semiconductor wafer processing techniques are adapted to enable robust device design onto a variety of softening substrates with tunable moduli. The resulting devices are stiff enough (shear modulus of ≈700 MPa) to assist with device implantation and then soften in vivo (≈300 kPa) approaching the modulus of brain tissue (≈10 kPa) within 24 h. Acute in vivo studies demonstrate that these materials are capable of recording neural activity. Softening multi‐electrode arrays offer a highly customizable interface, which can be optimized to improve biocompatibility, enabling the development of robust, reliable neural electrodes for neural engineering and neuroscience.
Planar electronics processing methods have enabled neural interfaces to become more precise and deliver more information. However, this processing paradigm is inherently 2D and rigid. The resulting mechanical and geometrical mismatch at the biotic–abiotic interface can elicit an immune response that prevents effective stimulation. In this work, a thiol–ene/acrylate shape memory polymer is utilized to create 3D softening substrates for stimulation electrodes. This substrate system is shown to soften in vivo from more than 600 to 6 MPa. A nerve cuff electrode that coils around the vagus nerve in a rat and that drives neural activity is demonstrated.
Flexible bioelectronics encompass a new generation of sensing devices, in which controlled interactions with tissue enhance understanding of biological processes in vivo. However, the fabrication of such thin film electronics with photolithographic processes remains a challenge for many biocompatible polymers. Recently, two shape memory polymer (SMP) systems, based on acrylate and thiol-ene/acrylate networks, were designed as substrates for softening neural interfaces with glass transitions above body temperature (37 °C) such that the materials are stiff for insertion into soft tissue and soften through low moisture absorption in physiological conditions. These two substrates, acrylate and thiol-ene/acrylate SMPs, are compared to polyethylene naphthalate, polycarbonate, polyimide, and polydimethylsiloxane, which have been widely used in flexible electronics research and industry. These six substrates are compared via dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and swelling studies. The integrity of gold and chromium/gold thin films on SMP substrates are evaluated with optical profilometry and electrical measurements as a function of processing temperature above, below and through the glass transition temperature. The effects of crosslink density, adhesion and cure stress are shown to play a critical role in the stability of these thin film materials, and a guide for the future design of responsive polymeric materials suitable for neural interfaces is proposed. Finally, neural interfaces fabricated on thiol-ene/acrylate substrates demonstrate long-term fidelity through both in vitro impedance spectroscopy and the recording of driven local field potentials for 8 weeks in the auditory cortex of laboratory rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.