Weld residual stress (WRS) is a major driver of primary water stress corrosion cracking (PWSCC) in safety critical components of nuclear power plants. Accurate understanding of WRS is thus crucial for reliable prediction of safety performance of component design throughout the life of the plant. However, measurement uncertainty in WRS is significant, driven by the method and the indirect nature in which WRS must be measured. Likewise, model predictions of WRS vary due to uncertainty induced by individual modeling choices. The uncertainty in WRS measurements and modeling predictions is difficult to quantify and complicates the use of WRS measurements in validating WRS predictions for future use in safety evaluations. This paper describes a methodology for quantifying WRS uncertainty that facilitates the comparison of predictions and measurements and informs design safety evaluations.
WRS is considered as a function through the depth of the weld. To quantify its uncertainty, functional data analysis techniques are utilized to account for the two types of variation observed in functional data: phase and amplitude. Phase variability, also known as horizontal variability, describes the variability in the horizontal direction (i.e., through the depth of the weld). Amplitude variability, also known as vertical variability, describes the variation in the vertical direction (i.e., magnitude of stresses). The uncertainty in both components of variability is quantified using statistical models in principal component space. Statistical confidence/tolerance bounds are constructed using statistical bootstrap (i.e., resampling) techniques applied to these models. These bounds offer a succinct quantification of the uncertainty in both the predictions and measurements as well as a method to quantitatively compare the two. Major findings show that the level of uncertainty among measurements is comparable to that among predictions and further experimental work is recommended to inform a validation effort for prediction models.
Please scroll down for article-it is on subsequent pages With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.) and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to transform strategic visions and achieve better outcomes. For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.