Studies utilizing highly pathogenic simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) have largely focused on the immunopathology of the central nervous system (CNS) during end-stage neurological AIDS and SIV encephalitis. However, this may not model pathophysiology in earlier stages of infection. In this nonaccelerated SHIV model, plasma SHIV RNA levels and peripheral blood and colonic CD4+ T cell counts mirrored early human immunodeficiency virus (HIV) infection in humans. At 12 weeks postinfection, cerebrospinal fluid (CSF) detection of SHIV RNA and elevations in IP-10 and MCP-1 reflected a discrete neurovirologic process. Immunohistochemical staining revealed a diffuse, low-level CD3+ CD4− cellular infiltrate in the brain parenchyma without a concomitant increase in CD68/CD163+ monocytes, macrophages, and activated microglial cells. Rare SHIV-infected cells in the brain parenchyma and meninges were identified by RNAScope in situ hybridization. In the meninges, there was also a trend toward increased CD4+ infiltration in SHIV-infected animals but no differences in CD68/CD163+ cells between SHIV-infected and uninfected control animals. These data suggest that in a model that closely recapitulates human disease, CNS inflammation and SHIV in CSF are predominantly mediated by T cell-mediated processes during early infection in both brain parenchyma and meninges. Because SHIV expresses an HIV rather than SIV envelope, this model could inform studies to understand potential HIV cure strategies targeting the HIV envelope.IMPORTANCE Animal models of the neurologic effects of HIV are needed because brain pathology is difficult to assess in humans. Many current models focus on the effects of late-stage disease utilizing SIV. In the era of antiretroviral therapy, manifestations of late-stage HIV are less common. Furthermore, new interventions, such as monoclonal antibodies and therapeutic vaccinations, target HIV envelope. We therefore describe a new model of central nervous system involvement in rhesus macaques infected with SHIV expressing HIV envelope in earlier, less aggressive stages of disease. Here, we demonstrate that SHIV mimics the early clinical course in humans and that early neurologic inflammation is characterized by predominantly T cell-mediated inflammation accompanied by SHIV infection in the brain and meninges. This model can be utilized to assess the effect of novel therapies targeted to HIV envelope on reducing brain inflammation before end-stage disease.
Toll-like receptor 7 (TLR7) agonist and PGT121 (broadly neutralizing antibody, bnAb) administration previously delayed viral rebound and induced SHIV remission. We evaluated the impact of GS-986 (TLR7 agonist) and dual bnAbs on viral rebound after antiretroviral therapy (ART) interruption. Rhesus macaques inoculated with SHIV-1157ipd3N4 were initiated on daily suppressive ART from Day 14 post SHIV inoculation. Active arm animals (n = 8) received GS-986, N6-LS and PGT121 after plasma viral suppression, starting from week 14. GS-986 induced immune activation and SHIV-specific T cell responses but not viral expression in all the active arm animals. After ART interruption, median time to viral rebound was 6 weeks in the active and 3 weeks in the control arm (p = 0.024). In this animal model, the administration of the combination of GS-986 and dual bnAbs was associated with a modest delay in viral rebound. This strategy should be further evaluated to better understand the underlying mechanisms for the induction of virus-specific immune responses and delay in viral rebound.
Flea and tick specimens (5-10 fleas or ticks) on dogs and cats from various sites in Bangkok were tested by polymerase chain reaction and DNA sequencing to detect DNA of bacteria Rickettsia (gltA and 17 kDa genes), Anaplasmataceae (16S rRNA gene), and Bartonella (pap31 and its genes). We confirmed that Rickettsia sp. related to Rickettsia felis was detected in 66 of 98 (67.4%) flea specimens from dogs, whereas 8 Bartonella henselae and 2 Bartonella clarridgeiae were detected in 10 of 54 (18.5%) flea specimens from cats. Further, this work provides the first evidence of 10 Ehrlichia canis (3.3%), 7 Anaplasma platys (2.3%), and 2 Wolbachia spp. (0.66%) in 304 Rhipicephalus sanguineus tick specimens in Thailand.
Background Zika virus (ZIKV) is a mosquito-transmitted flavivirus that affects many regions of the world. Infection, in utero, causes microcephaly and later developmental and neurologic impairments. The impact of ZIKV infection on neurocognition in adults has not been well described. The objective of the study was to assess the neurocognitive impact of ZIKV infection in adult rhesus macaques. Methods Neurocognitive assessments were performed using the Cambridge Neuropsychological Test Automated Battery (CANTAB) via a touch screen and modified Brinkman Board before and after subcutaneous ZIKV inoculation. Immune activation markers were measured in the blood and cerebral spinal fluid (CSF) by multiplex assay and flow cytometry. Results All animals (N = 8) had detectable ZIKV RNA in plasma at day 1 post-inoculation (PI) that peaked at day 2 PI (median 5.9, IQR 5.6–6.2 log10 genome equivalents/mL). In all eight animals, ZIKV RNA became undetectable in plasma by day 14 PI, but persisted in lymphoid tissues. ZIKV RNA was not detected in the CSF supernatant at days 4, 8, 14 and 28 PI but was detected in the brain of 2 animals at days 8 and 28 PI. Elevations in markers of immune activation in the blood and CSF were accompanied by a reduction in accuracy and reaction speed on the CANTAB in the majority of animals. Conclusions The co-occurrence of systemic and CSF immune perturbations and neurocognitive impairment establishes this model as useful for studying the impact of neuroinflammation on neurobehavior in rhesus macaques, as it pertains to ZIKV infection and potentially other pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.