The complete-active-space self-consistent field (CASSCF) method is a canonical electronic structure theory that holds a central place in conceptualizing and practicing first principles simulations. For application to realistic molecules, however, the CASSCF must be approximated to circumvent its exponentially scaling computational costs. Applying the many-body expansion—also known as the method of increments—to CASSCF (iCASSCF) has been shown to produce a polynomially scaling method that retains much of the accuracy of the parent theory and is capable of treating full valence active spaces. Due to an approximation made in the orbital gradient, the orbital parameters of the original iCASSCF formulation could not be variationally optimized, which limited the accuracy of its nuclear gradient. Herein, a variational iCASSCF is introduced and implemented, where all parameters are fully optimized during energy minimization. This method is able to recover electronic correlations from the full valence space in large systems, produce accurate gradients, and optimize stable geometries as well as transition states. Demonstrations on challenging test cases, such as the oxoMn(salen)Cl complex with 84 electrons in 84 orbitals and the automerization of cyclobutadiene, show that the fully variational iCASSCF is a powerful tool for describing challenging molecular chemistries.
Ah exaradicaloid molecule with alternating KekulØ and non-KekulØ connectivities between adjacent spin centers was obtained by fusing two conjugation motifs in Chichibabin and Schlenk hydrocarbons into acoronoid structure. 1 HNMR, ESR, and SQUIDe xperiments and computational analyses show that the system has asinglet ground state with asignificant hexaradicaloid character (g 0 = 0.826, g 1 = g 2 = 0.773). It has multiple thermally accessible high-spin states (up to the septet), with uniform energy gaps of ca 1.0 kcal mol À1 between consecutive multiplicities.I nl ine with its open-shell character, the coronoid has as mall electronic band gap (ca. 0.8 eV) and undergoes two consecutive one-electron oxidations at low potentials,yielding cationic forms with extended near-infrared absorption. The hexaradicaloid, whichc ombines open-shell and macrocyclic contributions to its p conjugation, is an example of ad esign strategy for multistate spin switches and redox-amphoteric NIR dyes.
Nanosecond transient absorption spectroscopy was used to study the photochemical ring-opening reaction for a 6-nitroindolinospiropyran (SP1) in solution and in nanocrystalline (NC) suspension at 298 K. We measured the kinetics in argon purged and air saturated acetonitrile and found that the presence of oxygen affected two out of the three components of the kinetic decay at 440 nm. These are assigned to the triplet excited states of the Z- and E-merocyanines (3Z-MC* and 3E-MC*). In contrast, a long-lived growth component at 550 nm and the decay of a band centered at 590 nm showed no dependence on oxygen and are assigned, respectively, to the ground state Z- and E-merocyanines (Z-MC0 and E-MC0). Laser flash photolysis studies performed in NC suspensions initially showed a very broad, featureless absorption spectrum that decayed uniformly for ca. 70 ns before revealing a more defined spectrum that persisted for greater than 4 ms and is consistent with a mixture of the more stable Z- and E-MC0 structures. We performed quantum mechanical calculations on the interconversion of E- and Z-MCs on the S0 and S1 potential energy surfaces. The computed UV-vis spectra for a scan along the Z → E interconversion reaction coordinate show substantial absorptivity from 300-600 nm, which suggests that the broad, featureless transient absorption spectrum results from the contribution of the transition structure and other high-energy species during the Z to E isomerization.
Heat-bath configuration interaction (HCI) is a deterministic method that approaches the full CI limit at greatly reduced computational cost. In this work, computational improvements to the HCI algorithm are introduced targeting speed, parallel efficiency, and memory requirements. The new implementation introduces a hash function to distribute determinants and takes advantage of MPI and OpenMP for parallelism allowing for a (22e,168o) active space to be studied, which explicitly includes 2.39 × 10 7 variational determinants and 8.95 × 10 10 perturbative determinants. Benchmarks show up to 86% parallel efficiency of the perturbative step on 32 nodes (4096 cores) and a total efficiency of 74%. The new HCI implementation is benchmarked for accuracy against prior results and applied to study the triplet−quintet gap in the challenging [FeO(NH 3 ) 5 ] 2+ complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.