This paper describes the development and evaluation of a Vietnamese statistical speech synthesis system using the average voice approach. Although speaker-dependent systems have been applied extensively, no average voice based system has been developed for Vietnamese so far. We have collected speech data from several Vietnamese native speakers and employed state-of-the-art speech analysis, model training and speaker adaptation techniques to develop the system. Besides, we have performed perceptual experiments to compare the quality of speaker-adapted (SA) voices built on the average voice model and speaker-dependent (SD) voices built on SD models, and to confirm the effects of contextual features including word boundary (WB) and part-of-speech (POS) on the quality of synthetic speech. Evaluation results show that SA voices have significantly higher naturalness than SD voices when the same limited contextual feature set excluding WB and POS is used. In addition, SA voices trained with limited contextual features excluding WB and POS still have better quality than SD voices trained with full contextual features including WB and POS. These results show the robustness of the average voice method over the speaker-dependent approach for Vietnamese statistical speech synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.