Much effort has been put into the optimization of the functional activity of proteins. For biosensors this protein functional optimization will increase the biosensor's sensitivity and/or selectivity. However, the strategy chosen for the immobilization of the proteins to the sensor surface might be equally important for the development of sensor surfaces that are optimally biologically active. Several studies published in recent years show that the oriented immobilization of the bioactive molecules improves the sensor's properties. In this review, we discuss the state of the art of the different protein immobilization strategies that are commonly used today with a special focus on biosensor applications. These strategies include nonspecific immobilization techniques either by physical adsorption, by covalent coupling, or by specific immobilization via site-specifically introduced tags or bio-orthogonal chemistry. The different tags and bio-orthogonal chemistry available and the techniques to site-specifically introduce these groups in proteins are also discussed.
In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.e. LEY, EFLEY or His6 spacer peptide, in the commonly used Luria-Bertani medium. The combination of these factors led to a high yield (up to 22 mg/l of culture) and nearly complete alkynation efficiency of the C-terminally modified nanobody via IPL. This yield can even be improved to ∼45 mg/l in the EnPresso(®) growth system but this method is more expensive and time-consuming. The resulting alkynated nanobodies retained excellent binding capacity towards the recombinant human VCAM1. The presented protocol benefits from time- and cost-effectiveness, which allows a feasible production up-scaling of generic alkynated nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to new biosurface applications that demand for a homogeneously oriented nanobody coupling. Prospectively, the alkynated nanobodies can be covalently coupled to a multitude of azide-containing counterparts, e.g. contrast labeling agents, particles or surfaces for numerous innovative applications.
Directed evolution of oxidoreductases to improve their catalytic properties is being ardently pursued in the industrial, biotechnological, and biopharma sectors.Hampering this pursuit are current enzyme screening methods that are limited in terms of throughput, cost, time, and complexity. We present a directed evolution strategy that allows for large-scale one-pot screening of glucose oxidase (GOx) enzyme libraries in well-mixed homogeneous solution. We used GOx variants displayed on the outer cell wall of yeasts to initiate a cascade reaction with horseradish peroxidase (HRP), resulting in peroxidase-mediated phenol crosscoupling and encapsulation of individual cells in well-defined fluorescent alginate hydrogel shells within~10 min in mixed cell suspensions. Following application of denaturing stress to whole-cell GOx libraries, only cells displaying GOx variants with enhanced stability or catalytic activity were able to carry out the hydrogel encapsulation reaction. Fluorescence-activated cell sorting was then used to isolate the enhanced variants. We characterized three of the newly evolved Aspergillus niger GOx enzyme sequences and found up to~5-fold higher specific activity, enhanced thermal stability, and differentiable glycosylation patterns. By coupling intracellular gene expression with the rapid formation of an extracellular hydrogel capsule, our system improves high-throughput screening for directed evolution of H 2 O 2producing enzymes many folds. K E Y W O R D Scell encapsulation, directed evolution, glucose oxidase, hydrogels, yeast display
Protein-conjugated magnetic nanoparticles (mNPs) are promising tools for a variety of biomedical applications, from immunoassays and biosensors to theranostics and drug-delivery. In such applications, conjugation of affinity proteins (e.g., antibodies) to the nanoparticle surface many times compromises biological activity and specificity, leading to increased reagent consumption and decreased assay performance. To address this problem, we engineered a biomolecular magnetic separation system that eliminates the need to chemically modify nanoparticles with the capture biomolecules or synthetic polymers of any kind. The system consists of (i) thermoresponsive magnetic iron oxide nanoparticles displaying poly(N-isopropylacrylamide) (pNIPAm), and (ii) an elastin-like polypeptide (ELP) fused with the affinity protein Cohesin (Coh). Proper design of pNIPAm-mNPs and ELP-Coh allowed for efficient cross-aggregation of the two distinct nanoparticle types under collapsing stimuli, which enabled magnetic separation of ELP-Coh aggregates bound to target Dockerin (Doc) molecules. Selective resolubilization of the ELP-Coh/Doc complexes was achieved under intermediate conditions under which only the pNIPAm-mNPs remained aggregated. We show that ELP-Coh is capable of magnetically separating and purifying nanomolar quantities of Doc as well as eukaryotic whole cells displaying the complementary Doc domain from diluted human plasma. This modular system provides magnetic enrichment and purification of captured molecular targets and eliminates the requirement of biofunctionalization of magnetic nanoparticles to achieve bioseparations. Our streamlined and simplified approach is amenable for point-of-use applications and brings the advantages of ELP-fusion proteins to the realm of magnetic particle separation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.