This is the first time that the method for the investigation of unpredictable solutions of differential equations has been extended to unpredictable oscillations of neural networks with a generalized piecewise constant argument, which is delayed and advanced. The existence and exponential stability of the unique unpredictable oscillation are proven. According to the theory, the presence of unpredictable oscillations is strong evidence for Poincaré chaos. Consequently, the paper is a contribution to chaos applications in neuroscience. The model is inspired by chaotic time-varying stimuli, which allow studying the distribution of chaotic signals in neural networks. Unpredictable inputs create an excitation wave of neurons that transmit chaotic signals. The technique of analysis includes the ideas used for differential equations with a piecewise constant argument. The results are illustrated by examples and simulations. They are carried out in MATLAB Simulink to demonstrate the simplicity of the diagrammatic approaches.
In this study, we develop a model of recurrent neural networks with functional dependence on piecewise constant argument of generalized type. Using the theoretical results obtained for functional differential equations with piecewise constant argument, we investigate conditions for existence and uniqueness of solutions, bounded solutions, and exponential stability of periodic solutions. We provide conditions based on the parameters of the model.
The authors consider a nonlinear epidemic equation by modeling it with generalized piecewise constant argument (GPCA). The authors investigate invariance region for the considered model. Sufficient conditions guaranteeing the existence and uniqueness of the solutions of the model are given by creating integral equations. An important auxiliary result giving a relation between the values of the unknown function solutions at the deviation argument and at any time t is indicated. By using Lyapunov-Razumikhin method developed by Akhmet and Aruğaslan for the differential equations with generalized piecewise constant argument (EPCAG), the stability of the trivial equilibrium is investigated in addition to the stability examination of the positive equilibrium transformed into the trivial equilibrium. Then sufficient conditions for the uniform stability and the uniform asymptotic stability of trivial equilibrium and the positive equilibrium are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.