Background: Recently, a small population of cancer stem cells in adult and pediatric brain tumors has been identified. Some evidence has suggested that CD133 is a marker for a subset of leukemia and glioblastoma cancer stem cells. Especially, CD133 positive cells isolated from human glioblastoma may initiate tumors and represent novel targets for therapeutics. The gene expression and the drug resistance property of CD133 positive cancer stem cells, however, are still unknown.
Cancer vaccine trials have failed to yield robust immunecorrelated clinical improvements as observed in animal models, fueling controversy over the utility of human cancer vaccines. Therapeutic vaccination represents an intriguing additional therapy for glioblastoma multiforme (GBM; grade 4 glioma), which has a dismal prognosis and treatment response, but only early phase I vaccine trial results have been reported. Immune and clinical responses from a phase II GBM vaccine trial are reported here. IFN-; responsiveness was quantified in peripheral blood of 32 GBM patients given therapeutic dendritic cell vaccines. Posttreatment times to tumor progression (TTP) and survival (TTS) were compared in vaccine responders and nonresponders and were correlated with immune response magnitudes. GBM patients (53%) exhibited z1.5-fold vaccine-enhanced cytokine responses. Endogenous antitumor responses of similar magnitude occurred in 22% of GBM patients before vaccination. Vaccine responders exhibited significantly longer TTS and TTP relative to nonresponders. Immune enhancement in vaccine responders correlated logarithmically with TTS and TTP spanning postvaccine chemotherapy, but not with initial TTP spanning vaccination alone. This is the first report of a progressive correlation between cancer clinical outcome and T-cell responsiveness after therapeutic vaccination in humans and the first tracing of such correlation to therapeutically exploitable tumor alteration. As such, our findings offer unique opportunities to identify cellular and molecular components of clinically meaningful antitumor immunity in humans. [Cancer Res 2008;68(14):5955-64]
Using a culture model of glial tumorigenesis, we identified a novel gene that was up-regulated in malignant mouse astrocytes following the loss of p53. The gene represents the murine homologue of pescadillo, an uncharacterized gene that is essential for embryonic development in zebrafish. Pescadillo is a strongly conserved gene containing unique structural motifs such as a BRCA1 C-terminal domain, clusters of acidic amino acids and consensus motifs for post-translational modification by SUMO-1. Pescadillo displayed a distinct spatial and temporal pattern of gene expression during brain development, being detected in neural progenitor cells and postmitotic neurons. Although it is not expressed in differentiated astrocytes in vivo, the pescadillo protein is dramatically elevated in malignant human astrocytomas. Yeast strains harboring temperaturesensitive mutations in the pescadillo gene were arrested in either G 1 or G 2 when grown in nonpermissive conditions, demonstrating that pescadillo is an essential gene in yeast and is required for cell cycle progression. Consistent with the latter finding, DNA synthesis was only observed in mammalian cells expressing the pescadillo protein. These results suggest that pescadillo plays a crucial role in cell proliferation and may be necessary for oncogenic transformation and tumor progression.
The rat 9L gliosarcoma is a widely used syngeneic rat brain tumor model that closely simulates glioblastoma multiforme when implanted in vivo. In this study, we sought to isolate and characterize a subgroup of cancer stem-like cells (CSLCs) from the 9L gliosarcoma cell line, which may represent the tumor-initiating subpopulation of cells. We demonstrate that these CSLCs form clonalderived spheres in media devoid of serum supplemented with the mitogens epidermal growth factor and basic fibroblast growth factor, express the NSC markers Nestin and Sox2, self-renew, and differentiate into neuron-like and glial cells in vitro. More importantly, these cells can propagate and recapitulate tumors when implanted into the brain of syngeneic Fisher rats, and they display a more aggressive course compared with 9L gliosarcoma cells grown in monolayer cultures devoid of mitogens. Furthermore, we compare the chemosensitivity and proliferation rate of 9L gliosarcoma cells grown as a monolayer to those of cells grown as floating spheres and show that the sphere-generated cells have a lower proliferation rate, are more chemoresistant, and express several antiapoptosis and drug-related genes, which may prove to have important clinical implications.
Patients with newly diagnosed multifocal glioblastoma on presentation experience significantly worse survival than patients with solitary glioblastoma. Patients with multifocal tumors continue to pose a therapeutic challenge in the temozolomide era and magnify the challenges faced while treating patients with malignant gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.