Ramelteon is a selective MT(1)/MT(2) receptor agonist, indicated for insomnia treatment. Safety, tolerance, pharmacokinetics, and cognitive performance were evaluated following increasing ramelteon doses. Healthy adults (35-65 years) were randomly assigned to receive 1 of 5 oral ramelteon doses (4, 8, 16, 32, or 64 mg; n = 8 per group) or placebo (n = 20). C(max) and AUC(infinity) (mean [%CV]) increased with each dose: C(max) = 1.15 (109), 5.73 (97), 6.92 (77), 17.4 (76), and 25.9 (77) ng/mL, respectively, and AUC(infinity) = 1.71 (114), 6.95 (108), 9.88 (78), 22.5 (80), and 36.1 (71 n x h/mL), respectively. Mean T(max) values of 0.75 to 0.94 hours and mean elimination half-life of 0.83 to 1.90 hours remained relatively constant. Ramelteon was extensively metabolized. Besides ramelteon, 4 metabolites, M-I, M-II, M-III, and M-IV, were measured in serum. Metabolite M-II, which has shown weak ramelteon-like activity in vitro, was the major metabolite in serum. Digit Symbol Substitution Test and visual analog scale alertness scores were similar across all dose groups and did not differ from placebo. All adverse events were mild or moderate and resolved before study completion.
These findings suggest no clinically meaningful drug-drug interactions between clobazam and drugs metabolized by CYP3A4, CYP2C19, CYP1A2, or CYP2C9. Concomitant use of drugs metabolized by CYP2D6 may require dosage adjustment. Clobazam may be administered safely as adjunctive therapy in patients with Lennox-Gastaut syndrome, without meaningful changes in clobazam pharmacokinetics that would require dosage adjustment.
Aldosterone, the final product of the renin-angiotensin-aldosterone system (RAAS), is a mineralocorticoid hormone that classically acts, via the mineralocorticoid (aldosterone) receptor, on epithelia of the kidneys, colon, and sweat glands to maintain electrolyte homeostasis. Aldosterone has also been shown to act at nonepithelial sites where it can contribute to cardiovascular disease such as hypertension, stroke, malignant nephrosclerosis, cardiac fibrosis, ventricular hypertrophy, and myocardial necrosis. Although angiotensinconverting enzyme (ACE) inhibitors and angiotensin type 1 (AT 1 ) receptor antagonists act to suppress the RAAS, these agents do not adequately control plasma aldosterone levels -a phenomenon termed "aldosterone synthesis escape." Spironolactone, a nonselective aldosterone receptor antagonist, is an effective agent to suppress the actions of aldosterone; its use is, however, associated with progestational and antiandrogenic side effects due to its promiscuous binding to other steroid receptors. For these reasons, eplerenonethe first agent of a new class of drugs known as the selective aldosterone receptor antagonists (SARAs) -is under development. In rodent models, eplerenone provides marked protection against vascular injury in the kidney and heart. In phase II clinical trials, eplerenone demonstrates 24-h control of blood pressure with once or twice daily dosing, and is safe and well tolerated in patients with heart failure when given with standard of care agents. Pharmacokinetic studies reveal that eplerenone has good bioavailability with low protein binding, good plasma exposure, and is highly metabolized to inactive metabolites and excreted principally in the bile. Eplerenone is well tolerated in acute and chronic safety pharmacology studies. Ongoing phase III trials of eplerenone in the treatment of hypertension and heart failure are underway. These studies will extend our understanding 185
The metabolic profile of niacin is influenced by the rate of niacin administration. This study characterizes the effect of administration rate on the pharmacokinetics of niacin and its metabolites. Twelve healthy males were enrolled in an open-label, dose-rate escalation study and received 2000 mg niacin at 3 different dosing rates. Plasma was analyzed for niacin, nicotinuric acid, nicotinamide, and nicotinamide-N-oxide. Urine was analyzed for niacin and the metabolites nicotinuric acid, nicotinamide, nicotinamide-N-oxide, N-methylnicotinamide, and N-methyl-2-pyridone-5-carboxamide. C(max) and AUC(0-t) for niacin and nicotinuric acid increased with an increase in dosing rate. The changes observed in plasma nicotinamide and nicotinamide-N-oxide parameters, however, did not correlate to dosing rate. The total amount of niacin and metabolites excreted in urine was comparable for all 3 treatments. However, with the increase in dosing rate, urine recovery of niacin and nicotinuric acid showed a significant increase, whereas N-methyl-2-pyridone-5-carboxamide and N-methylnicotinamide showed a significant decrease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.