Background-Proximity to routine destinations is an important correlate of physical activity. We examined the association between distance from school and physical activity in adolescent girls.
Despite interest in the built food environment, little is known about the validity of commonly used secondary data. The authors conducted a comprehensive field census identifying the locations of all food outlets using a handheld global positioning system in 8 counties in South Carolina (2008–2009). Secondary data were obtained from 2 commercial companies, Dun & Bradstreet, Inc. (D&B) (Short Hills, New Jersey) and InfoUSA, Inc. (Omaha, Nebraska), and the South Carolina Department of Health and Environmental Control (DHEC). Sensitivity, positive predictive value, and geospatial accuracy were compared. The field census identified 2,208 food outlets, significantly more than the DHEC (n = 1,694), InfoUSA (n = 1,657), or D&B (n = 1,573). Sensitivities were moderate for DHEC (68%) and InfoUSA (65%) and fair for D&B (55%). Combining InfoUSA and D&B data would have increased sensitivity to 78%. Positive predictive values were very good for DHEC (89%) and InfoUSA (86%) and good for D&B (78%). Geospatial accuracy varied, depending on the scale: More than 80% of outlets were geocoded to the correct US Census tract, but only 29%–39% were correctly allocated within 100 m. This study suggests that the validity of common data sources used to characterize the food environment is limited. The marked undercount of food outlets and the geospatial inaccuracies observed have the potential to introduce bias into studies evaluating the impact of the built food environment.
The current COVID-19 pandemic raises concerns worldwide, leading to serious health, economic, and social challenges. The rapid spread of the virus at a global scale highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has proven to be associated with viral transmission. In this study, we analyzed over 580 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographic regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amenable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected people’s travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures, proving that Twitter-based mobility implies the effectiveness of those measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts vary substantially among states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.