Proteomic studies have facilitated the identification of proteins associated with the detergent-resistant membrane (DRM) fraction in a variety of cell types. Here, we have undertaken label-free quantitative (LFQ) proteomic profiling of the proteins associated with detergent-resistant plasma and internal membranes from resting and activated platelets. One hundred forty-one proteins were identified and raw data is available via ProteomeXchange with identifier PXD002554. The proteins identified include a myriad of important platelet signaling and trafficking proteins including Rap1b, Src, SNAP-23, syntaxin-11, and members of the previously unattributed Ragulator complex. Mean LFQ intensities calculated across three technical replicates for the three biological donors revealed that several important platelet signaling proteins altered their detergent solubility upon activation, including GPIbα, GPIbβ, Src, and 14-3-3ζ. Altered detergent solubility for GPIbα, following activation using a variety of platelet agonists, was confirmed by immunoblotting and further coimmunoprecipitation experiments revealed that GPIbα forms a complex with 14-3-3ζ that shifts into DRMs following activation. Taken together, proteomic profiling of platelet DRMs allowed greater insight in the complex biology of both DRMs and platelets and will be a useful subproteome to study platelet-related disease. All MS data have been deposited in the ProteomeXchange with identifier PXD002554 (http://proteomecentral.proteomexchange.org/dataset/PXD002554).
The VCP-Ufd1-Npl4 complex regulates proteasomal processing within cells by delivering ubiquitinated proteins to the proteasome for degradation. Mutations in VCP are associated with two neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD), and extensive study has revealed crucial functions of VCP within neurons. By contrast, little is known about the functions of Npl4 or Ufd1 in vivo. Using neuronal-specific knockdown of Npl4 or Ufd1 in Drosophila melanogaster, we infer that Npl4 contributes to microtubule organization within developing motor neurons. Moreover, Npl4 RNAi flies present with neurodegenerative phenotypes including progressive locomotor deficits, reduced lifespan and increased accumulation of TAR DNA-binding protein-43 homolog (TBPH). Knockdown, but not overexpression, of TBPH also exacerbates Npl4 RNAi-associated adult-onset neurodegenerative phenotypes. In contrast, we find that neuronal knockdown of Ufd1 has little effect on neuromuscular junction (NMJ) organization, TBPH accumulation or adult behaviour. These findings suggest the differing neuronal functions of Npl4 and Ufd1 in vivo.
Mitochondrial morphology, distribution and function are maintained by the opposing forces of mitochondrial fission and fusion, the perturbation of which gives rise to several neurodegenerative disorders. The large guanosine triphosphate (GTP)ase dynamin-related protein 1 (Drp1) is a critical regulator of mitochondrial fission by mediating membrane scission, often at points of mitochondrial constriction at endoplasmic reticulum (ER)-mitochondrial contacts. Hereditary spastic paraplegia (HSP) subtype SPG61 is a rare neurodegenerative disorder caused by mutations in the ER-shaping protein Arl6IP1. We have previously reported defects in both the ER and mitochondrial networks in a Drosophila model of SPG61. In this study, we report that knockdown of Arl6IP1 lowers Drp1 protein levels, resulting in reduced ER–mitochondrial contacts and impaired mitochondrial load at the distal ends of long motor neurons. Increasing mitochondrial fission, by overexpression of wild-type Drp1 but not a dominant negative Drp1, increases ER–mitochondrial contacts, restores mitochondrial load within axons and partially rescues locomotor deficits. Arl6IP1 knockdown Drosophila also demonstrate impaired autophagic flux and an accumulation of ubiquitinated proteins, which occur independent of Drp1-mediated mitochondrial fission defects. Together, these findings provide evidence that impaired mitochondrial fission contributes to neurodegeneration in this in vivo model of HSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.