Earlier declines in marine resources, combined with current fishing pressures and devastating coral mortality in 2015, have resulted in a degraded coral reef ecosystem state at Puakō in West Hawaiʹi. Changes to resource management are needed to facilitate recovery of ecosystem functions and services.
We developed a customised ecosystem model to evaluate the performance of alternative management scenarios at Puakō in the provisioning of ecosystem services to human users (marine tourists, recreational fishers) and enhancing the reef's ability to recover from pressures (resilience).
Outcomes of the continuation of current management plus five alternative management scenarios were compared under both high and low coral‐bleaching related mortality over a 15‐year time span.
Current management is not adequate to prevent further declines in marine resources. Fishing effort is already above the multispecies sustainable yield, and, at its current level, will likely lead to a shift to algal‐dominated reefs and greater abundance of undesirable fish species. Scenarios banning all gears other than line fishing, or prohibiting take of herbivorous fishes, were most effective at enhancing reef structure and resilience, dive tourism, and the recreational fishery. Allowing only line fishing generated the most balanced trade‐off between stakeholders, with positive gains in both ecosystem resilience and dive tourism, while only moderately decreasing fishery value within the area.
Synthesis and applications. Our customised ecosystem model projects the impacts of multiple, simultaneous pressures on a reef ecosystem. Trade‐offs of alternative approaches identified by local managers were quantified based on indicators for different ecosystem services (e.g. ecosystem resilience, recreation, food). This approach informs managers of potential conflicts among stakeholders and provides guidance on approaches that better balance conservation objectives and stakeholders’ interests. Our results indicate that a combination of reducing land‐based pollution and allowing only line fishing generated the most balanced trade‐off between stakeholders and will enhance reef recovery from the detrimental effects of coral bleaching events that are expected over the next 15 years.
Background
Local management action to address coral-reef stressors can improve reef health and mitigate the effects of global climate change. Coastal development and runoff lead to sedimentation, which directly impacts coral recruitment, growth, mortality, and the ecosystem services that coral reefs provide. Decision making for reef resilience in the face of global and local stressors requires information on thresholds for management action. In response to needs identified by reef managers, we plan to conduct a systematic review and meta-analysis that will explore the effects of both deposited and suspended sediment on corals to identify single and interacting stressor thresholds. We will identify levels of sediment exposure (i.e., concentration, duration, and frequency) that cause adverse physical, physiological, behavioral, developmental, and ecological responses in coral and describe geographic and taxonomic patterns in these responses. Our ultimate goal is to provide managers with sediment exposure thresholds that can be expected to cause these responses.
Methods
Our systematic review will synthesize available evidence on the effects of suspended and deposited sediment on corals. The research questions were formulated with an advisory team to support management decisions concerning local reef stressors in waters under U.S. federal jurisdiction. While the advisory team is most concerned with reefs adjacent to U.S. Pacific Islands, our review will include studies that examine reef-building coral species around the world. We will search online databases and grey literature to obtain a list of potential studies, assess their relevance, and critically appraise them for validity and risk of bias. Provided enough data can be extracted from relevant experimental studies, we will conduct meta-analyses that examine changes in coral health and survival in response to suspended and/or deposited sediment, with the goal to define sediment thresholds for reef managers. If enough data are available from within the U.S. Pacific Islands, we will construct region-, site-, and/or species-specific thresholds to improve local management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.