Organic acids have been shown to be effective in reducing the presence of pathogenic bacteria on hot beef carcass surfaces; however, application for decontaminating chilled carcasses has not been fully evaluated. In this study, a postchill, 30-s lactic acid spray (500 ml of 4% L-lactic acid, 55 degrees C) was applied onto outside rounds that had been contaminated with Escherichia coli O157:H7 and Salmonella Typhimurium, subsequent to prechill hot carcass treatments consisting of water wash alone or water wash followed by a 15-s lactic acid spray (250 ml of 2% L-lactic acid, 55 degrees C). The prechill treatments reduced both pathogens by 3.3 to 3.4 log cycles (water wash alone) to 5.2 log cycles (water wash and lactic acid). In all cases, the postchill acid treatment produced an additional reduction in E. coli O157:H7 of 2.0 to 2.4 log cycles and of 1.6 to 1.9 log cycles for Salmonella Typhimurium. The counts of both pathogens remained significantly lower in ground beef produced from the outside rounds that received prechill and postchill acid spray than from those that received a postchill spray only. These data indicate that organic acid sprays may be successfully applied for pathogen reduction in beef carcass processing after the cooler, especially when combined with prechill treatments.
Pathogen monitoring is becoming more precise as sequencing technologies become more affordable and accessible worldwide. This transition is especially apparent in the field of food safety, which has demonstrated how whole-genome sequencing (WGS) can be used on a global scale to protect public health. GenomeTrakr coordinates the WGS performed by public-health agencies and other partners by providing a public database with real-time cluster analysis for foodborne pathogen surveillance. Because WGS is being used to support enforcement decisions, it is essential to have confidence in the quality of the data being used and the downstream data analyses that guide these decisions. Routine proficiency tests, such as the one described here, have an important role in ensuring the validity of both data and procedures. In 2015, the GenomeTrakr proficiency test distributed eight isolates of common foodborne pathogens to participating laboratories, who were required to follow a specific protocol for performing WGS. Resulting sequence data were evaluated for several metrics, including proper labelling, sequence quality and new single nucleotide polymorphisms (SNPs). Illumina MiSeq sequence data collected for the same set of strains across 21 different laboratories exhibited high reproducibility, while revealing a narrow range of technical and biological variance. The numbers of SNPs reported for sequencing runs of the same isolates across multiple laboratories support the robustness of our cluster analysis pipeline in that each individual isolate cultured and resequenced multiple times in multiple places are all easily identifiable as originating from the same source.
Shiga toxin-producing Escherichia coli (STEC) contamination of agricultural water might be an important factor to recent foodborne illness and outbreaks involving leafy greens. Closed bacterial genomes from whole genome sequencing play an important role in source tracking. We aimed to determine the limits of detection and classification of STECs by qPCR and nanopore sequencing using 24 hour enriched irrigation water artificially contaminated with E. coli O157:H7 (EDL933). We determined the limit of STEC detection by qPCR to be 30 CFU/reaction, which is equivalent to 105 CFU/ml in the enrichment. By using Oxford Nanopore’s EPI2ME WIMP workflow and de novo assembly with Flye followed by taxon classification with a k-mer analysis software (Kraken2), E. coli O157:H7 could be detected at 103 CFU/ml (68 reads) and a complete fragmented E. coli O157:H7 metagenome-assembled genome (MAG) was obtained at 105−108 CFU/ml. Using a custom script to extract the E. coli reads, a completely closed MAG was obtained at 107−108 CFU/ml and a complete, fragmented MAG was obtained at 105−106 CFU/ml. In silico virulence detection for E. coli MAGs for 105−108 CFU/ml showed that the virulotype was indistinguishable from the spiked E. coli O157:H7 strain. We further identified the bacterial species in the un-spiked enrichment, including antimicrobial resistance genes, which could have important implications to food safety. We propose this workflow provides proof of concept for faster detection and complete genomic characterization of STECs from a complex microbial sample compared to current reporting protocols and could be applied to determine the limit of detection and assembly of other foodborne bacterial pathogens.
Shiga toxin-producing Escherichia coli (STEC) contamination of agricultural water might be an important factor to recent foodborne illness and outbreaks involving leafy greens. Whole genome sequencing generation of closed bacterial genomes plays an important role in source tracking. We aimed to determine the limits of detection and classification of STECs by qPCR and nanopore sequencing using enriched irrigation water artificially contaminated with E. coli O157:H7 (EDL933). We determined the limit of STEC detection by qPCR to be 30 CFU/reaction, which is equivalent to 105 CFU/ml in the enrichment. By using Oxford Nanopore's EPI2ME WIMP workflow and de novo assembly with Flye followed by taxon classification with a k-mer analysis software (Kraken), E. coli O157:H7 could be detected at 103 CFU/ml (68 reads) and a complete fragmented E. coli O157:H7 metagenome-assembled genome (MAG) was obtained at 105-108 CFU/ml. Using a custom script to extract the E. coli reads, a completely closed MAG was obtained at 107-108 CFU/ml and a complete, fragmented MAG was obtained at 105-106 CFU/ml. In silico virulence detection for E. coli MAGs for 105-108 CFU/ml showed that the virulotype was indistinguishable from the spiked E. coli O157:H7 strain. We further identified the bacterial species in the un-spiked enrichment, including antimicrobial resistance genes, which could have important implications to food safety. We propose this workflow could be used for detection and complete genomic characterization of STEC from a complex microbial sample and could be applied to determine the limit of detection and assembly of other foodborne bacterial pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.