Phenol is a hazardous compound that is often found in wastewater in most industries and cannot be degraded naturally. Photocatalysis is a promising method to reduce phenol waste, because it can produce more environmentally friendly compounds like CO2 and H2O. Titanium dioxide (TiO2) has been widely applied in the degradation process of waste compounds including phenol waste. To improve the performance of TiO2, graphene can be used as a dopants because it has a surface area. Modification of graphene with surfactants was carried out to increase dispersion and reduce agglomeration on TiO2 doped with graphene. The purpose of this research is to synthesize TiO2–graphene/surfactant composite which can be used to degrade phenolic compounds. Photodegradation of TiO2 composites was carried out by varying the initial concentration of phenol (10, 20, 30 ppm). Composites synthesis begins with disperse the surfactant on the surface of the graphene, then proceeds with doping graphene (surfactant) on TiO2. The resulting composites were characterized using SEM, BET, FTIR, XRD and UV-Vis spectrophotometer. The phenol degradation process was carried out using a photodegradation reactor. The highest performance TiO2–graphene/surfactant composite was obtained at an initial concentration of 10 ppm phenol is 81.02%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.