Since 1900, Semarang City has been meeting its industrial water needs by pumping groundwater through its underlying aquifers. The trend toward exploiting groundwater resources has driven the number of deep wells and their production capacity to increase, and therefore leads to the water table to drop from time to time, which has been marked as one of the primary causes of land subsidence there. The main aim of the current study was to numerically model the temporal and spatial evolution of groundwater table under excess abstraction so that a groundwater management strategy can be accordingly drawn up for ensuing the sustainability of groundwater resources in the future. A series of numerical simulations were carried out to take into account hydrogeological data, artificial and natural discharges of deep wells, and boundary effects in Semarang City. The groundwater modeling is calibrated under two flow conditions of the steady state from 1970 to 1990 and the transient state from 1990 to 2005 for six observation wells distributed in Semarang City. Four scenarios that reflect potential management strategies were developed, and then their effectiveness was systematically investigated. The results of our study indicate that the implementation of proper groundwater control management and measure is able to restore the groundwater level to rise back in Semarang City, and in turn achieve the sustainability of groundwater resources.
ABSTRAK Gempabumi dapat menimbulkan bahaya likuifaksi yang dapat merusakkan bangunan dan sarana infrastruktur khususnya di wilayah perkotaan di Indonesia. Investigasi geoteknik bawah permukaan telah dilakukan di daerah Patalan, Bantul, Yogyakarta, untuk mendapatkan gambaran susunan lapisan tanah dan kekuatannya, menentukan kedalaman dan ketebalan lapisan tanah yang berpotensi likuifaksi dan penurunan lapisan tanah akibat likuifaksi. Analisis potensi likuifaksi dilakukan menggunakan data CPT (cone penetration test) dan N-SPT (standard penetration test), dengan mempertimbangkan nilai percepatan getaran tanah maksimum (p.g.a) sebesar 0,25g, magnitudo gempabumi sebesar 6,2 SR dan muka airtanah setempat. Hasil penyelidikan menunjukkan bahwa lapisan tanah lepas selama gempabumi terdiri dari pasir lanauan dan lanau pasiran pada kedalaman antara 0,2 -12,8 m. Analisis potensi likuifaksi mengindikasikan bahwa ketebalan lapisan tanah yang berpotensi terlikuifaksi bervariasi antara 0,2 m dan 5,2 m, Sedangkan penurunan total lapisan tanah terutama terkonsentrasi di wilayah bagian tengah yang terletak di jalur Patahan Opak dengan besaran antara 0,21 cm hingga 12,98 cm.
DOI:10.17014/ijog.7.3.273-289Land subsidence is the lowering of ground surface due to natural and/or anthropogenic processes. Land subsidence in the Semarang-Demak plain has been going on for more than thirty years, however the contribution of natural and anthropogenic causes is relatively unknown. The Semarang-Demak plain has only been formed recently, as a result of rapid sedimentation during the Holocene. The basin mainly consists of underconsolidated thick clay, vulnerable to excessive settlement due to its own weight and additional pressures. The rate of natural subsidence is quantified by modelling the delayed dissipation of measured overpressure and the resulting vertical deformation, resulting in natural compaction rate of less than 0.8 cm/year in Semarang City and more than 0.8 cm/year in Demak Regency. The subsidence computed for parts of the Semarang-Demak plain were compared to the measured geodetic rate, and the relative contributions of natural and anthropogenic causes are derived. Modelling results show that natural subsidence is more significant at the eastern part of the plain (Demak region) with compaction rate reaching 0.9 - 2.2 cm/year that counts for 48 - 92% of the total land subsidence.
On 2018 September 28, 18:03 a local time (10:03 am UTC), the Mw 7.5 earthquake with a focal depth of about 20 km devastated the Palu region in Central Sulawesi, Indonesia resulting in a catastrophic disaster and many casualties. The Palu earthquakes triggered widespread landslides upstream, contributing to the sizeable material volume accumulated in rivers and mountain slopes. After the Palu earthquake, from September 28, 2018, until December 2021, at least 24 events of debris floods have occurred, which have spread to 15 villages. As of late, the empirical debris flow model Flow-R, software for susceptibility mapping of debris flows at a regional scale, was published. While Flow-R's applicability on a regional scale has been confirmed in several studies, the calibrated case using back-analysis of individual debris flow events in Indonesia based on DEMNAS with a spatial resolution of 8.3 m has never been conducted. Local debris flows modeling using Flow-R was evaluated with three well-documented debris flow events on the break slopes on the west and east sides of the Palu Valley. Quantitative analysis was carried out in this study to assess the accuracy, positive predictive value, and negative predictive value of models. First, the result shows the individual back-analysis model of debris flows found good agreement between debris-flow paths predicted and documented debris flow path extent. However, the parameters for rheological properties and erosion rate required in the software are limited. Second, the quantitative analysis shows accuracy, positive, and negative predictive value, which varies considerably. Based on the study, Flow-R is not suitable for comprehensive hazard mapping but provides a direct information about possible run-outdebris flow paths. Furthermore, lateral spreading and friction of Flow-R model results can be used to calibrate the process with rheological properties and erosion rate in other numerical modeling software, either for forward or back analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.