Poloxamer is a biocompatible polymer that has already been approved by the US FDA for multiple applications. Poloxamer itself has many grades and functional categories that enable the improvement of both physicochemical and biological properties of drugs. In this minireview, the functional properties of poloxamer for physicochemical modification, such as solubility and stability, and biological response modification, such as neuroprotection, cell apoptosis, efflux pump modification, membrane cell modification, and cellular uptake, are discussed to provide a broader understanding to assist the development of poloxamer-based formulations.
Background: The main problem in the use of docetaxel as a potent chemotherapeutic agent is its solubility. Practically insoluble docetaxel requires a harsh formulation with high surfactant and alcohol concentrations to comply with the product quality. However, this formulation is inconvenient for patients. Polymeric micelles using a biocompatible polymer, poloxamer, seem to be a promising approach to increase the solubility of docetaxel, avoiding the high polysorbate and alcohol contents in the commercial product and yielding similar or better anticancer effects. Objective: This study aims to investigate the effects of surfactant with three different charges on the particle size, chemical stability, in vitro drug release and anticancer efficacy of the docetaxel-loaded poloxamer-based polymeric micelle formulation. objective: This study aims to investigate the effects of surfactant with three different charges on the particle size, chemical stability, and anticancer efficacy of the docetaxel-loaded poloxamer-based polymeric micelle formulation. Methods: The freeze drying method was used to prepare polymeric micelles of docetaxel. Dynamic light scattering was used to determine particle size. The morphology of particles was investigated using a transmission electron microscope. High Pressure Liquid Chromatography was used to measure encapsulation efficiency, drug loading, and percentage of drug released. MTT assay was used to assess the anticancer effect. Result: Nonionic and anionic surfactants tended to increase the particle size, while cationic surfactants had no effect. Furthermore, the addition of cationic surfactant increased the chemical stability of docetaxel. Poloxamer polymeric micelles have sustained drug release, and the addition of a surfactant can increase polymeric micelle drug release. All surfactant charges increased the anticancer efficacy of docetaxel compared to the commercial formulation Taxotere, except for the formulation prepared with an anionic surfactant. result: Nonionic and anionic surfactants tended to increase the particle size, while cationic surfactants had no effect. Furthermore, the addition of cationic surfactant increased the chemical stability of docetaxel. All surfactant charges increased the anticancer efficacy of docetaxel compared to the commercial formulation Taxotere, except for the formulation prepared with anionic surfactant. Conclusion: The charge of the surfactant affects the particle size, chemical stability, drug release and anticancer properties of docetaxel-loaded poloxamer polymeric micelles. Cationic surfactant formulations have shown to be promising, resulting in the most stable and highest anticancer effect. conclusion: The charge of the surfactant affects the particle size, chemical stability and anticancer properties of docetaxel-loaded poloxamer polymeric micelles. Cationic surfactant formulations have shown to be promising, resulting in the most stable and highest anticancer effect. other: -
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.