The fuel economy of an automobile is a highly complex function of the detailed characteristics of the vehicle and its subsystems (particularly the engine, transmission and drivetrain), as well as being dependent on the manner in which the vehicle is driven. For existing vehicles, automotive manufacturers utilize laboratory test procedures to evaluate fuel economy. However, during new-vehicle design, and to assess the fuel economy potential of new technologies, computer programs that simulate the operation of the vehicle system over prescribed driving schedules are used. Of particular interest are the integrated fuel consumptions on the EPA Urban and Highway driving schedules since these are subject to Federal regulation. Since neither detailed subsystem test data nor simulation programs are typically used by those outside the automotive industry, the physics of fuel economy is not always well understood. This paper presents the physics of motor vehicle fuel economy in an accurate, concise, and understandable form so that meaningful discussion/debate on the prospects for, and the limitations of, fuel economy improvements can be facilitated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.