Sensorimotor training providing motion-dependent somatosensory feedback to spinal locomotor networks restores treadmill weight-bearing stepping on flat surfaces in spinal cats. In this study, we examined if locomotor ability on flat surfaces transfers to sloped surfaces and the contribution of length-dependent sensory feedback from lateral gastrocnemius (LG) and soleus (Sol) to locomotor recovery after spinal transection and locomotor training. We compared kinematics and muscle activity at different slopes (±10° and ±25°) in spinalized cats ( n = 8) trained to walk on a flat treadmill. Half of those animals had their right hindlimb LG/Sol nerve cut and reattached before spinal transection and locomotor training, a procedure called muscle self-reinnervation that leads to elimination of autogenic monosynaptic length feedback in spinally intact animals. All spinal animals trained on a flat surface were able to walk on slopes with minimal differences in walking kinematics and muscle activity between animals with/without LG/Sol self-reinnervation. We found minimal changes in kinematics and muscle activity at lower slopes (±10°), indicating that walking patterns obtained on flat surfaces are robust enough to accommodate low slopes. Contrary to results in spinal intact animals, force responses to muscle stretch largely returned in both SELF-REINNERVATED muscles for the trained spinalized animals. Overall, our results indicate that the locomotor patterns acquired with training on a level surface transfer to walking on low slopes and that spinalization may allow the recovery of autogenic monosynaptic length feedback following muscle self-reinnervation. NEW & NOTEWORTHY Spinal locomotor networks locomotor trained on a flat surface can adapt the locomotor output to slope walking, up to ±25° of slope, even with total absence of supraspinal CONTROL. Autogenic length feedback (stretch reflex) shows signs of recovery in spinalized animals, contrary to results in spinally intact animals.
BACKGROUND The measurement of ground reaction forces (GRFs) in animals trained to locomote on a treadmill after spinal cord injury (SCI) could prove valuable for evaluating training outcomes; however, quantitative measures of the GRFs in spinal felines are limited. NEW METHOD A split belt treadmill was designed and constructed to measure the GRFs of feline hindlimbs during stepping. The treadmill consists of two independent treadmill assemblies, each mounted on a force plate. The design allows measurements of the vertical (Fz), fore-aft (Fy) and mediolateral (Fx) ground-reaction forces for both hindlimbs while the forelimbs are resting on a platform. RESULTS Static and dynamic noise tests revealed little to no noise at frequencies below 6 Hz. Validation of the force plate measurements with a hand-held force sensor force showed good agreement between the two force readings. Peak normalized (to body mass) vertical GRFs for intact cats were 4.89±0.85N/Kg for the left hindlimb and 4.79±0.97N/Kg for the right. In comparison, trained spinalized cats peak normalized vertical GRFs were 2.20±0.94N/Kg for the left hindlimb and 2.85±0.99N/Kg for the right. COMPARISON WITH OTHER EXISTING METHODS Previous methods of measuring GRFs used stationary single force plates or treadmill mounted to single force plate. Using independent treadmills for each hindlimb allows measurement of the individual hindlimb’s GRFs in spinalized cats following body-weight supported treadmill training. CONCLUSIONS The split belt force treadmill enables the simultaneous recording of ground-reaction forces for both hindlimbs in cats prior to spinalization, and following spinalization and body-weight-supported treadmill training (BWST).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.