We are concerned here with recursive function theory analogs of certain problems in chromatic graph theory. The motivating question for our work is: Does there exist a recursive (countably infinite) planar graph with no recursive 4-coloring? We obtain the following results: There is a 3-colorable, recursive planar graph which, for all k, has no recursive k-coloring; every decidable graph of genus p ≥ 0 has a recursive 2(x(p) − 1)-coloring, where x(p) is the least number of colors which will suffice to color any graph of genus p; for every k ≥ 3 there is a k-colorable, decidable graph with no recursive k-coloring, and if k = 3 or if k = 4 and the 4-color conjecture fails the graph is planar; there are degree preserving correspondences between k-colorings of graphs and paths through special types of trees which yield information about the degrees of unsolvability of k-colorings of graphs.
We are concerned here with recursive function theory analogs of certain problems in chromatic graph theory. The motivating question for our work is: Does there exist a recursive (countably infinite) planar graph with no recursive 4-coloring? We obtain the following results: There is a 3-colorable, recursive planar graph which, for all k, has no recursive k-coloring; every decidable graph of genus p ≥ 0 has a recursive 2(x(p) − 1)-coloring, where x(p) is the least number of colors which will suffice to color any graph of genus p; for every k ≥ 3 there is a k-colorable, decidable graph with no recursive k-coloring, and if k = 3 or if k = 4 and the 4-color conjecture fails the graph is planar; there are degree preserving correspondences between k-colorings of graphs and paths through special types of trees which yield information about the degrees of unsolvability of k-colorings of graphs.
hierarchy, ordinal equivalence, power indices, simple majority, voting games,
Abstract. We employ recursion theoretic arguments to show that Hamilton paths for locally finite graphs are more difficult to find, in general, than Euler paths. A locally finite graph is recursive if we can effectively decide whether or not any two given vertices are adjacent, and highly recursive if we can effectively find all vertices adjacent to any given vertex. We find that there are recursive planar graphs with Euler or Hamilton paths but no such recursive paths. There are even particularly simple classes of connected, planar, highly recursive graphs for which we can show there is no effective way to decide about the existence of Euler or Hamilton paths. However, we obtain the following contrast: If a highly recursive graph has an Euler path we can effectively find a recursive Euler path; whereas, there is a planar, highly recursive graph with Hamilton paths but no recursive Hamilton path.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.