Lignin is a complex and irregular biopolymer of crosslinked phenylpropanoid units in plant secondary cell walls. Its biosynthesis requires three endoplasmic reticulum (ER)-resident cytochrome P450 monooxygenases, C4H, C3'H and F5H, to establish the structural characteristics of its monomeric precursors. These P450 enzymes were reported to associate with each other or potentially with other soluble monolignol biosynthetic enzymes to form an enzyme complex or a metabolon. However, the molecular basis governing such enzyme or pathway organization remains elusive. Here, we show that Arabidopsis membrane steroid-binding proteins (MSBPs) serve as a scaffold to physically organize monolignol P450 monooxygenases, thereby regulating the lignin biosynthetic process. We find that although C4H, C3'H and F5H are in spatial proximity to each other on the ER membrane in vivo, they do not appear to directly interact with each other. Instead, two MSBP proteins physically interact with all three P450 enzymes and, moreover, MSBPs themselves associate as homomers and heteromers on the ER membrane, thereby organizing P450 clusters. Downregulation of MSBP genes does not affect the transcription levels of monolignol biosynthetic P450 genes but substantially impairs the stability and activity of the MSBP-interacting P450 enzymes and, consequently, lignin deposition, and the accumulation of soluble phenolics in the monolignol branch but not in the flavonoid pathway. Our study suggests that MSBP proteins are essential structural components in the ER membrane that physically organize and stabilize the monolignol biosynthetic P450 enzyme complex, thereby specifically controlling phenylpropanoid-monolignol branch biosynthesis.
Mammalian mitochondrial DNA (mtDNA) resides in compact nucleoids, where it is replicated and transcribed into long primary transcripts processed to generate rRNAs, tRNAs, and mRNAs encoding 13 proteins. This situation differs from bacteria and eukaryotic nucleoli, which have dedicated rRNA transcription units. The assembly of rRNAs into mitoribosomes has received little study. We show that mitochondrial RNA processing enzymes involved in tRNA excision, ribonuclease P (RNase P) and ELAC2, as well as a subset of nascent mitochondrial ribosomal proteins (MRPs) associate with nucleoids to initiate RNA processing and ribosome assembly. SILAC pulse-chase labeling experiments show that nascent MRPs recruited to the nucleoid fraction were highly labeled after the pulse in a transcription-dependent manner and decreased in labeling intensity during the chase. These results provide insight into the landscape of binding events required for mitochondrial ribosome assembly and firmly establish the mtDNA nucleoid as a control center for mitochondrial biogenesis.
BackgroundA highly organized transverse tubule (T‐tubule) network is necessary for efficient Ca2+‐induced Ca2+ release and synchronized contraction of ventricular myocytes. Increasing evidence suggests that T‐tubule remodeling due to junctophilin‐2 (JP‐2) downregulation plays a critical role in the progression of heart failure. However, the mechanisms underlying JP‐2 dysregulation remain incompletely understood.Methods and ResultsA mouse model of reversible heart failure that is driven by conditional activation of the heterotrimeric G protein Gαq in cardiac myocytes was used in this study. Mice with activated Gαq exhibited disruption of the T‐tubule network and defects in Ca2+ handling that culminated in heart failure compared with wild‐type mice. Activation of Gαq/phospholipase Cβ signaling increased the activity of the Ca2+‐dependent protease calpain, leading to the proteolytic cleavage of JP‐2. A novel calpain cleavage fragment of JP‐2 is detected only in hearts with constitutive Gαq signaling to phospholipase Cβ. Termination of the Gαq signal was followed by normalization of the JP‐2 protein level, repair of the T‐tubule network, improvements in Ca2+ handling, and reversal of heart failure. Treatment of mice with a calpain inhibitor prevented Gαq‐dependent JP‐2 cleavage, T‐tubule disruption, and the development of heart failure.ConclusionsDisruption of the T‐tubule network in heart failure is a reversible process. Gαq‐dependent activation of calpain and subsequent proteolysis of JP‐2 appear to be the molecular mechanism that leads to T‐tubule remodeling, Ca2+ handling dysfunction, and progression to heart failure in this mouse model.
Na+,K+-ATPase is a heterodimer of alpha and beta subunits and a member of the P-type ATPase family of ion pumps. Here we present an 11-A structure of the heterodimer determined from electron micrographs of unstained frozen-hydrated tubular crystals. For this reconstruction, the enzyme was isolated from supraorbital glands of salt-adapted ducks and was crystallized within the native membranes. Crystallization conditions fixed Na+,K+-ATPase in the vanadate-inhibited E2 conformation, and the crystals had p1 symmetry. A large number of helical symmetries were observed, so a three-dimensional structure was calculated by averaging both Fourier-Bessel coefficients and real-space structures of data from the different symmetries. The resulting structure clearly reveals cytoplasmic, transmembrane, and extracellular regions of the molecule with densities separately attributable to alpha and beta subunits. The overall shape bears a remarkable resemblance to the E2 structure of rabbit sarcoplasmic reticulum Ca2+-ATPase. After aligning these two structures, atomic coordinates for Ca2+-ATPase were fit to Na+,K+-ATPase, and several flexible surface loops, which fit the map poorly, were associated with sequences that differ in the two pumps. Nevertheless, cytoplasmic domains were very similarly arranged, suggesting that the E2-to-E1 conformational change postulated for Ca2+-ATPase probably applies to Na+,K+-ATPase as well as other P-type ATPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.