Development and performance evaluation of air fine bubbles on water quality of thai catfish rearing AIP Conference Proceedings 1927, 030043 (2018) particles has advanced properties compare to conventional particles applied for compact fluorescent lamp (CFL) as three band phosphor. However, suspension of fine particles easily agglomerated during preparation of spray coating of the CFL tube. Therefore, it is introduced newly developed beads mill system to disperse fine phosphor. The beads mill consist of glass beads, dispersing chamber (impellers), separator chamber, slurry pump and motors. The first important performance of beads mill is the performance of the designed on separating the beads with the suspended fine particles. We report the development of beads mill and its separation performance vary in flow rate and separator rotation speeds. The 27 kg of glass beads with 30 μm in size was poured into dispersing chamber and then water was pumped continuously through the slurry pump. The samples for the separation test was obtained every 1 hours vary in rotation speed and slurry flow rate. The results shows that the separation performance was 99.99 % obtained for the rotation speed of >1000 rpm and flow rate of 8 L/minute. The performances of the system was verified by dispersing fine phosphor Y 2 O 3 :Eu 3+ particles with concentration 1 wt.%. From the observed size distribution of particles after beads mill, it is concluded that the current design of bead mill effectively dispersed fine phosphor Y 2 O 3 :Eu 3+ .
Abstract. Spin coater usually applied in preparation of a thin layer in industrial coatings and advanced material functionalization in various applications. This paper reports the development of spin coater with a closed loop control system using ATMega8535 microcontroller. The thickness of the thin film layer depend on the rotation of spin coater in which usually controlled by open-loop type. In long-term utilization of the spin coater, the performance of the motor usually degraded and caused the speed of the rotation is no longer accurate. Therefore to resolve the drawback, a closeloop system is applied in currently developed spin coater. The speed range of the spin coater was designed in between 450-6000 rpm, equipped with user interface through push button and LCD display. The rotary encoder transducer was applied to sense the speed of the dc motor. The pulse width modulation (PWM) method is applied to control the speed of the dc motor. The performance of the control system were evaluated based on the applied voltage to the PWM driver (L298) versus speed of the motor and also the rise time, overshoot, and settling time of the control system. The result shows that in the setting of low speed (450 rpm), the settling time is very fast about 12 seconds and very high overshoot about 225 rpm, contrary for the high speed (5550 rpm) the setting time is 71 seconds and very low overshot about 30 rpm. In addition, to evaluate the stability of the mechanical system, the spin coater was tested to prepare a ZnO thin film in various speed of rotations and at various concentrations of the solution, i.e. 10 wt.% and 15 wt.%. It is concluded that the spin coater can be utilized for thin film coating after pass the maximum of the settling time (71 seconds). The currently developed spin coater produce a film with common characteristics of the spin coater where thicker film was obtained when higher concentration was used and thinner the film was obtained when higher speed of the rotation was applied.
Abstract. The integrating sphere (IS) is one of the most important device in characterization of illuminance of a light source, such as CFL, LED etc. to obtain their efficacy. IS is a hollowed sphere with its interior covered with a diffuse white reflective coating where its accuracy of the measurement is highly affected by reflectance of its interior coating. This paper report the preparation of inner surface coating of the IS with inner diameter of 25 cm attempt to create a durable and highly reflective interior coating by combining BaSO 4 with a binding material (either Polyethylene Glycol (PEG) or white paint). The various inner surface coating mixture vary in weight % ratio of BaSO 4 :PEG or BaSO 4 :white paint were investigated. The results show that the inner surface coating mixture of BaSO 4 :PEG (99.8:0.2) has highest reflectance compared to others mixture. The IS with best mixture was calibrated with white LED and resulted an average sphere multiplier (M) was 8.7, and average reflectance ( ) was 0.90. The result of the relative error of luminescence measurement using calibrated M and is 6.7 %. It is concluded that the developed IS produced lower allowed error compared to the commercially available IS. However at lower wavelength shows lower intensity compare to the available datasheet of the LED under investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.