Unmanageable industrial wastewater will have an impact on the environment. One of the alternative wastewater treatment technologies is electrocoagulation. This study investigates the effects of voltage, time, and NaCl concentrations on wastewater through electrocoagulationspecifically, how they affect the total suspended solid (TSS), the total dissolved solid (TDS), and the chemical oxygen demand (COD) reduction of palm oil mill effluent (POME)-with response surface methodology. An iron electrode was used with a time variation of 15, 30, and 45 minutes; a voltage variation of 10, 15, and 20 volts; and NaCl concentrations of 0.0, 0.5, and 1.0 M. A Box-Behnken design in the response surface method formed the model and optimized the electrocoagulation. Optimization of COD, TSS, and TDS reductions with the response surface methodology was accomplished at 93.12%, 97.70%, and 41.06% respectively, in 37 minutes with 20 volts, and no NaCl concentration. The analysis of variance (ANOVA) showed that the quadratic model, with the R 2 coefficients of COD, TSS, and TDS at 0.99, 0.97, and 0.92, respectively, and the adjusted-R 2 values at 0.97, 0.94, and 0.83, respectively. Conformity testing for the optimum conditions proved the model's validity, yielding COD, TSS, and TDS reduction efficiency at 93.27%, 97.64%, and 40.78%, respectively. The results of this study were useful for predicting and controlling the COD, TSS, and TDS removal efficiencies in different conditions, and they will provide information on wastewater disposal's impact on the environment without going through the first processing stage. Therefore, electrocoagulation is a more economical POME processing technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.