Background1,3-Diphenylpropenones (chalcones) are well known for their diverse array of bioactivities. Hydroxyl group substituted chalcones are the main precursor in the synthesis of flavonoids. Till date various methods have been developed for the synthesis of these very interesting molecules. Continuing our efforts for the development of simple, eco-friendly and cost-effective methodologies, we report here a solvent free condensation of aryl ketones and aldehydes using iodine impregnated alumina under microwave activation. This new protocol has been applied to a variety of substituted aryl carbonyls with excellent yield of substituted 1,3-diphenylpropenones.ResultsDifferently substituted chalcones were synthesized using iodine impregnated neutral alumina as catalyst in 79-95% yield in less than 2 minutes time under microwave activation without using any solvent. The reaction was studied under different catalytic conditions and it was found that molecular iodine supported over neutral alumina gives the best yield. The otherwise difficult single step condensation of hydroxy substituted aryl carbonyls is an attractive feature of this protocol to obtain polyhydroxychalcones in excellent yields. In order to find out the general applicability of this new endeavor it was successfully applied for the synthesis of 15 different chalcones including highly bioactive prenylated hydroxychalcone xanthohumol.ConclusionA new, simple and solvent free method was developed for the synthesis of substituted chalcones in environmentally benign way. The mild reaction conditions, easy work-up, clean reaction profiles render this approach as an interesting alternative to the existing methods.
Herein, we report the synthesis of tiny spherical Pd nanoparticles (NPs) by green chemical method under ambient conditions using flower extract of Lantana camara plant. The size of the Pd NPs is tunable from 4.7 to 6.3 nm by systematically controlling the concentration of either metal ions or plant extract. The synthesized Pd NPs were well characterized by different spectroscopic, microscopic and diffractometric techniques. The Pd NPs offered good size‐dependent catalytic activity in the Suzuki‐Miyaura C‐C coupling reaction under mild reaction conditions in (1: 1) water‐ethanol mixture. The catalyst is stable and exhibited excellent reusability up to three cycles of coupling reaction after which the catalytic activity decreases.
Three underutilized leafy vegetables Sarcochlamys pulcherrima (Roxb.) Gaudich (SP), Ipomoea aquatica Forssk. (IA) and Zanthoxylum rhetsa (Roxb.) DC (ZR) were extracted with different solvents viz. 95 % ethyl alcohol, methanol and hot water. The extracts were evaluated for their antioxidant potential via DPPH, ABTS and FRAP assay along with electroanalytical studies using cyclic voltammetry. The antidiabetic potential was determined by recording their α-amylase and α-glucosidase inhibitory assay. The total phenolic content (TPC), total flavonoid content (TFC) and the liquid chromatography-mass spectrometry (LC/MS) based phytochemical profiles of the extracts were also determined. All three extracts of SP exhibited significant antioxidant capacity. The antidiabetic potential of the IA and ZR extracts was found to be higher than or at par with that of standard acarbose. LC/MS studies reveal the presence of hitherto reported antioxidant and antidiabetic compounds like gammaaminobutyric acid, cinnamic acid, caffeic acid, α-viniferin, piperlonguminine, niacin, kaempferol, etc., in the extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.