Skeletal muscle tissue engineering has major promise for regenerative treatment of patients suffering from muscle loss due to, for example, traumatic injury, but faces considerable challenges to progress toward clinical application. In the present study the creation of an aligned prevascularized muscle tissue was addressed. We hypothesized that an aligned vascularized three-dimensional (3D) muscle tissue can be induced in vitro by merely using uniaxial stress. The present study showed that not only do endothelial cells and muscle cells independently align in the direction of uniaxial stress in a hydrogel-based 3D culture system, but also, more importantly, the endothelial cells in the co-cultured 3D constructs organized into vascular structures. Strikingly, in these cultures no additional growth factors were needed to induce vascular formation of the endothelial cells. Vascular endothelial growth factor (VEGF) production by the muscle cells was stimulated by the uniaxial stress that develops in the tissue when constrained in one direction. This stress accompanied by VEGF production appeared to play a key role in the organization of the endothelial cells into vessel-like structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.